• Title/Summary/Keyword: Higher Heating Value

Search Result 342, Processing Time 0.03 seconds

Electrofusion Joining Technology for Polyethylene Pipes Using Carbon Fiber (탄소섬유를 이용한 Polyethylene배관의 전기융착 기술)

  • Ahn, Seok-Hwan;Ha, Yoo-Sung;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.5
    • /
    • pp.93-98
    • /
    • 2013
  • Fuel gas is an important energy source that is being increasingly used because of the convenience and clean energy provided. Natural gas is supplied to consumers safely through an underground gas-pipe network made of a polyethylene material. In electrofusion, which is one of the joining methods used, copper wire is used as the heating wire. However, it takes a long time for fusion to occur because the electrical resistance of copper is low. In this study, therefore, electrofusion was conducted by replacing the copper heating wire with carbon fiber to reduce the fusion time and improve the production when joining large pipes. Fusion and tensile tests were performed after the electrofusion joint was made in the polyethylene pipe using carbon fiber. The results showed that the fusion time was shorter and the temperature inside the pipe was higher with an increase in the current value. The ultimate tensile strength of specimens was higher than that of virgin polyethylene pipe, except for polyethylene pipes joined using a current of 0.8 A. The best fusion current value was 0.9 or 1.0 A because of the short fusion time and lack of transformation inside the pipe. Thus, it was shown that carbon fiber can be used to replace the copper heating wire.

Effects of Heat Treatments on the Antioxidant Activities of Fruits and Vegetables (과채류의 항산화 활성에 미치는 열처리 효과)

  • Kim, Hyun-Young;Woo, Koan-Sik;Hwang, In-Guk;Lee, Youn-Ri;Jeong, Heon-Sang
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.2
    • /
    • pp.166-170
    • /
    • 2008
  • The effects of heat treatments on the antioxidant activities of selected fruits and vegetables were investigated by heating at various temperatures (110, 120, 130, 140, and 150$^{\circ}C$) for 2 hr. The examined fruits and vegetables included tomatoes (Lycopersicon esculentum), oriental melon (Cucumis melon var. makuwa), apples (Malus pumila Miller var. domestica Schneider), melon (Cucumis melon), watermelon (Citrullus vulgaris), and banana (Musa sapientum). The total polyphenol and total flavonoid contents of the juices from heated samples were quantified spectrophotometrically, and their antioxidant activities were determined using DPPH and ABTS radicals. As the heating temperature increased, antioxidant activity also increased. The highest total polyphenol content (2.80 mg/g) occurred in the oriental melon with heating at 150$^{\circ}C$, and this value was 7 times higher than that of the untreated oriental melon (0.40 mg/g). The highest total flavonoid content (148.80 ${\mu}$g/g) occurred in the melon heat treated at 150$^{\circ}C$, and this value was 37 times higher than that of the untreated melon (4.54 ${\mu}$g/g). DPPH radical-scavenging activity was the highest in the watermelon treated at 150$^{\circ}C$ (84.37%, 0.50 mg/g), and this value was 40 times higher than that of the untreated watermelon. Finally, the highest ascorbic acid (AA) equivalent antioxidant capacity (AEAC) value (239.50 mg AA eq/g) was obtained in the watermelon heat treated at 150$^{\circ}C$ for 2 hr (control = 18.35 mg AA eq/g).

Effect of Cultivars, Cooking and Processing on the Trypsin Inhibitor Activity of Soybean

  • Felipe, Penelope;Yang, Yoon-Hyung;Lee, Jung-Hee;Sok, Dai-Eun;Kim, Hyoung-Chin;Yoon, Won-Kee;Kim, Hwan-Mook;Kim, Mee-Ree
    • Preventive Nutrition and Food Science
    • /
    • v.10 no.1
    • /
    • pp.6-10
    • /
    • 2005
  • The trypsin inhibitor activity (TIA) of various soybean cultivars was evaluated by measuring the inhibition of trypsin activity using N-benzoyl-DL-arginine-p-nitro-anilide (BAPNA) as the substrate. The TIA values of eleven white shelled soybean cultivars including a glyphosate-tolerant soybean (16.58 to 17.90㎎/g) were not significantly different among cultivars. Black shelled soybeans had higher TIA values, ranging from 40.09 to 52.11㎎/g, compared to white shelled soybeans (p<0.05). When the TIA of commercially processed soybean foods were determined, no TIA was detected in soysauce, tofu and soybean paste. During conventional moist heating, the IT/sub 50/ (Time required to reach 50% inhibition of TIA) values were decreased as heating temperature and cooking pressure increased. The IT/sub 50/ values of moist heating were estimated to be 91.68, 37.71 and 19.50 min at 60, 80 and 100℃, respectively. The IT/sub 50/ value of microwave cooking was 4.75 min at medium heat, while that of the pressure cooking at 120℃ was only 2.62min. Moreover, there was a negative relationship between temperature and IT/sub 50/ values (R=0.92, p<0.01). The TIA of soybean sprouts was completely inactivated after heating at 100℃ for 5 min, although fresh soybean sprouts showed one fifth of the TIA value of white shelled soybeans. Based on our results, pressure cooking is the most effective cooking method to reduce TIA in soybeans.

Performance Estimation of Hybrid Solar Air-Water Heater on Single Working of Heating Medium (복합형 태양열 가열기에서 열매체 단일운전에 따른 기기성능 평가)

  • Choi, Hwi-Ung;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.49-56
    • /
    • 2014
  • Research about hybrid solar air-water heater that can make heated air and hot water was conducted as a part of improving efficiency of solar thermal energy. At this experiment, ability of making heating air and hot water was investigated and compared with traditional solar air heater and flat plate solar collector for hot water when air or liquid was heated respectively. Comparing hybrid solar air-water heater that used in this experiment to other solar air heater studied already, it has a lower efficiency at same mass flow rate. Air channel structure, fin's shape and arrangement in the air channel result in these difference then the ability of air heating need to be improved with changing these thing. In case of making hot water, performance was shown as similar with traditional system although the air channels were established beneath absorbing plate. But the heat loss coefficient was shown higher value by installing of air channel. Also the performance of hot water making was shown lower value at same liquid mass flow rate with traditional flat plate solar collector for hot water. So the necessity of performance improvement at lower mass flow rate of each heating medium can be confirmed.

Comparison of Quality and Sensory Characteristics of Tomato for Tomato Sauce Production (토마토 소스 제조를 위한 토마토의 품질 및 관능적 특성 비교)

  • Ha, Dae-Joong;Kwak, Eun-Jung
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.965-973
    • /
    • 2008
  • In this study, we compared the quality and sensory characteristics of 4 types of fresh tomatoes and 2 types of canned tomatoes, and then determined the most preferred quality characteristics and tomato type for the production of tomato sauce. The sample tomatoes were prepared by cutting after either peeling or heating for 5 min. Soluble solids were in the following order: Italian canned >American canned, Cherry> Vita king > Aranka > general tomatoes. The primary free sugars were fructose and glucose, and we determined that fructose and glucose were the most prevalent sugars in the cherry and American canned tomatoes. The total sugars, which were the sum of the fructose and glucose contents, were consistent with the soluble solid contents. pH was measured in the following order: general> Italian canned> Cherry, Vitaking> Aranka> American canned tomatoes. The most abundant amino acid was glutamic acid, and its content in the unheated tomatoes occurred in the following order: American canned> Italian canned> Vita king> Cherry> general tomatoes; however, after heating, the Vita king tomato was followed by the American canned tomato. The lightness (L value) of the fresh tomatoes tended to be higher than that of the canned tomatoes, and it decreased after heating. The redness (a value) of the unheated tomatoes was in the following order: Italian canned> American canned> Vitaking tomatoes; after heating, the Vitaking evidenced the highest values, followed by the canned tomatoes. The result of our QDA profile of sensory characteristics according to redness, aroma, sweet taste, sour taste, palatability, and viscosity was in the following order: Italian canned > American canned > Vitaking tomatoes, which evidenced the most balanced hexagonal shape. In the preference test, 2 types of canned tomatoes and Vitaking tomatoes were the most preferred among the fresh tomatoes. From the correlation coefficients among the sensory characteristics, canned tomatoes were the most preferred for the production of tomato sauce due to its high redness, flavor, palatability, and viscosity values. Vitaking tomatoes were the most appropriate among the fresh tomatoes.

  • PDF

Relationship between Physical and Chemical Properties of Frying Vegetable Oils (가열산화에 의한 대두유와 면실유의 물리화학적 특성변화와 상관관계)

  • 이근태;박성민;황영길;강옥주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.4
    • /
    • pp.654-659
    • /
    • 1994
  • To elucidate the relationship between physical and chemical properties of frying vegetable oils, soybean oil and cottonseed oil were heated in air temperatures from $160^{\circ}C\;to\;220^{\circ}C$ for 60 hours. Acid value, carbonyl value, iodine value, viscosity and content of polymer were remarkably changed as higher heating temperature and/or longer heating time. Correlation coefficient of viscosity to acid value was 0.9843 for soybean oil and 0.9819 for cottonseed oil. In case of viscosity and carbonyl value, viscosity also showed good relationship to carbonyl value as 0.9779 for soybean oil and 0.9797 for cottonseed oil. And correlation coefficient of viscosity to iodine value of soybean oil was 0.9852 and cottonseed oil was 0.9948.

  • PDF

The Energy Saving Effect and Economic Assessment of Office Building according to the Building Envelope Remodeling (사무소 건물의 외피 리모델링에 따른 에너지절감효과 및 경제성 분석)

  • Choi, Seon woo;Kim, Ji Yeon;Park, Hyo soon;Kim, Jun Tae
    • KIEAE Journal
    • /
    • v.12 no.6
    • /
    • pp.85-92
    • /
    • 2012
  • The Korean government has introduced building regulations with improved energy conservation measures, including higher insulation levels for building envelope. However, there are many existing buildings that tend to consume more energy for heating and cooling than new buildings, as they were built under the former regulations with relatively higher U-values of walls and glazing. In order to improve energy efficiency in existing buildings, green remodelling of building envelope and building services are required. For existing buildings, building services improvements have been achieved through energy service company(ESCO), but much attention has not been paid to building envelope improvements with various reasons, such as uncertainty of energy saving effect design issues and costs. The aim of this study is to evaluate the impact of building envelope improvements in a typical commercial building on its heating and cooling energy loads. The results show that the improvement of glazing with lower U-values has the highest energy saving effects, followed by wall, roof and floor, under the condition of same level of insulation improvements. However, high insulated glazing increased LCC because of higher initial investment costs.

Experimental Study on Thermal Characteristics of Heat Exchanger Modules for Multi Burner Boiler (자트로파 유(Crude Jatropha Oil)에 대한 보일러 직접 연소 특성)

  • Kang, Sae-Byul;Kim, Jong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2934-2939
    • /
    • 2008
  • We conducted a test of a direct burning of crude Jatropha oil (CJO) in a commercial boiler system. The fuel, crude Jatropha oil is not biodiesel which comes from transeterification process of bio oil, but it is pure plant oil. The higher heating value (HHV) of the CJO is 39.3 MJ/kg (9,380 kcal/kg) and is higher than that of a commercial heating oil, 37.9 MJ/kg. The kinematic viscosity of CJO is 36.2 mm2/s at $40^{\circ}C$ and 8.0 mm2/s at $100^{\circ}C$. The burner used in the test is a commercial burner for a commercial heatingoil and its capacity is 140 kW (120,000 kcal/h). We did a preliminary test whether the combustion is stable or not. The preliminary test was a kind of open air combustion test using the commercial burner with crude Jatropha oil. We found that the combustion can be stable if the crude Jatrophaoil temperature is higher than $90^{\circ}C$. We measured the flue gas concentration by using a gas analyzer. The NOx concentration is $80{\sim}100\;ppm$ and CO concentration is nearly 0 ppm at flue gas O2 concentration of 3.0 and 4.5%.

  • PDF

Physicochemical Properties of Ethanol Extracts and Dietary Fiber from Cassia tora L. Seed (결명자 에탄올 추출물 및 식이섬유의 이화학적 특성)

  • Hong, Kyung-Hee;Choi, Won-Hee;Ahn, Ji-Yun;Jung, Chang-Hwa;Ha, Tae-Youl
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.3
    • /
    • pp.612-619
    • /
    • 2012
  • This study was conducted to investigate the physicochemical properties of the ethanol extracts and soluble dietary fiber from Cassia tora L. seed. The proximate composition of Cassia tora, soluble solid contents, color intensity and contents of emodin and rhein of Cassia tora extract, molecular mass distribution, sugar contents and viscosity of soluble fiber from Cassia tora were analyzed. Cassia tora contains 12.6% of moisture, 5.2% of ash, 13.4% of crude protein, 7.2% of crude fat, 8.8% of insoluble fiber and 48.3% of soluble fiber. The effects of extract condition on soluble solid contents, color intensity and contents of emodin and rhein of Cassia tora extract were investigated. The soluble solid contents were higher in 70% or 50% ethanol extracts than those in 100% ethanol extracts and showed highest value in grind sample extracts. In Hunter's color value, 100% ethanol extracts and whole Cassia tora sample extracts were higher in L and b value, but on the contrary, were lower in a value, than those of the other. The highest emodin and rhein contents were observed in 70% and 50% ethanol extracts, respectively, and showed higher value in room temperature extracts than in heating extracts. The molecular mass of soluble fiber from Cassia tora seed was estimated by gel filtration chromatography. Most soluble fiber(80%) exhibited a molecular mass range of between 50~2000 kDa. The major sugars of soluble fiber from Cassia tora seed were identified as xylose, mannose and galactose. The apparent viscosity of 0.5% soluble fiber from Cassia tora seed was 33 mPas showing a higher value than pectin or xanthan gum.

The Characterization of Woodchip Torrefaction and Byproduct Gas (우드칩 반탄화와 부생가스의 특성 분석)

  • Kang, Ku;Wang, Long;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.55-62
    • /
    • 2014
  • Torrefaction is considered as a promising pre-treatment for thermochemical utilization of biomass. Torrefaction temperature and time are the critical operation parameters. In this study, investigated were the effects of reaction temperature and time on product composition of torrefaction. scanning electron microscope (SEM) images and thermo gravimetric analyzer (TGA) results were also compared for the effects of the operating parameters. SEM images showed that the pores were observed at the temperature of $250^{\circ}C$ for 30 minutes. Rapid decreases in weight were observed the temperature between 200 and$400^{\circ}C$. Higher heating value of the torrefied biomass was over 5,000 kcal/kg at the temperature of $250^{\circ}C$ for 45 minutes. Energy density, which is defined as the ratio of the energy yield over the mass yield was 1.36 at the temperature of $250^{\circ}C$ for 45 minutes. The energy density was higher up to 1.6 at the temperature of $280^{\circ}C$, which indicates greater loss in mass. The major components of the gas produced in the torrefaction were $CO_2$ and CO, with traces of methane. The total amount of gas was 31.54 l/kg and the calorific value of the gas was $1,164.4Kcal/Nm^3$ at the temperature of $250^{\circ}C$ for 30 minute reaction time. Based on the results of this study, the temperature of effective torrefaction is about $250^{\circ}C$ for 30 to 45 minutes of reaction time. Considering the heating value, it is desirable to utilize the gas for efficient process of torrefaction.