• Title/Summary/Keyword: High-weight concrete

Search Result 525, Processing Time 0.028 seconds

Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets

  • Zhang, Yonggang;Wang, Yonghong;Zhao, Yuanyuan
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.369-383
    • /
    • 2021
  • This article deals with the frequency analysis of viscoelastic sandwich disk with graphene nano-platelets (GPLs) reinforced viscoelastic concrete (GPLRVC) face sheets and honeycomb core. The honeycomb core is made of aluminum due to its low weight and high stiffness. The rule of the mixture and modified Halpin-Tsai model are engaged to provide the effective material constant of the concrete. By employing Hamilton's principle, the governing equations of the structure are derived and solved with the aid of the Generalize Differential Quadrature Method (GDQM). In this paper, viscoelastic properties are modeled according to Kelvin-Voigt viscoelasticity. The deflection as the function of time can be solved by the fourth-order Runge-Kutta numerical method. Afterward, a parametric study is carried out to investigate the effects of the outer to inner radius ratio, hexagonal core angle, thickness to length ratio of the concrete, the weight fraction of GPLs into concrete, and the thickness of honeycomb core to inner radius ratio on the frequency of the viscoelastic sandwich disk with honeycomb core and FG-GPLRVC face sheet.

Fundamental Study of Fire-Proof Characteristics of High Strength Concrete Using Meta-Kaolin and Waste Tire Chip (메타카올린과 폐타이어 잔입자를 사용한 고강도콘크리트의 내화성능에 관한 기초적 연구)

  • Lee, Mun-Hwan;Lee, Sea-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • By replacing the meta-kaolin with cement and the waste tire chip with fine aggregate separately, the high strength concrete is protected from the spalling in fire and the method to constrain the temperature increase of steel bar within the concrete and the basic properties of the high strength concrete mixed with the material are reviewed. As the result, meta-kaolin increases the self fire proof characteristics of the concrete, the waste tire chip can share the internal expanding pressure so it can be deleted. In detail, using the meta-kaolin about the cement in 4$\sim$8% of weight ratio about the cement and the waste tire chip under the grade scope of 0.6$\sim$3 mm in 5$\sim$10% of weight ratio about the sand is very effective to prevent the spalling.

Application of concrete nanocomposite to improvement in rehabilitation and decrease sports-related injuries in sports flooring

  • Hao Wang;Huiwu Zhang
    • Advances in concrete construction
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2023
  • Currently, polymer matrix nanocomposites (PMCs) are a prominent area of research due to their outstanding mechanical, thermal, and durability properties. The increase in recent studies justifies the possibility of using PMCs in structural retrofitting and reconstruction of damaged infrastructure and serving as new structural material. Using nanotechnology, nanocomposite panels in flooring combine concrete and steel, providing a very high level of performance. In sports flooring, high-performance concrete has become a challenge for reducing sports injuries and refinement in rehabilitation. As a composite material, this type of resistant concrete is one of the most durable and complex multi-phase materials. This article uses polyvinyl alcohol polymer (PVC) and multi-walled carbon nanotubes as concrete matrix fillers. Solution methods have been used for dispersing PVC and carbon nanotubes in concrete. The water-cement ratio, carbon nanotube weight ratio, and heat treatment parameters influenced the concrete nanocomposite's tensile and compressive strength. The dispersion of carbon nanotubes in cement paste and the observation of nano-microcracks in concrete was evaluated by scanning electron microscope (SEM).

A Basic Study on Light-weight Concrete Using Wasted Form Polyurethane (폐발포 폴리우레탄이 혼입된 경량 콘크리트의 기초적 연구)

  • Park, Sang-Hyo;Lee, Seong-Gyu;Lee, Min-Hi
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.4
    • /
    • pp.356-362
    • /
    • 2016
  • Light-weight concrete uses forming agents for reducing weight and high heat insulation property. However, the forming agents make problems of decreased volume and compressive strength of the concrete. This research aims to having weight-reduction and securing heat insulation property using recycled wasted form polyurethane without any forming agents. A small quantity of admixture used for constructability and avoiding material segregation. We picked admixtures from two different companies which shows evenly dispersed of wasted form polyurethane. This research conducts a study on the effect of mixing ratio of admixture on the light-weight concrete used wasted form polyurethane. As a result of the test, increased mixing ratio of the admixtures results reduced fluidity of concrete. On the other hand, percentage of moisture content and compressive strength are increased slightly. Combustibility performance and sound insulation performance are also secured, as well.

Palm oil industry's bi-products as coarse aggregate in structural lightweight concrete

  • Huda, Md. Nazmul;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Darain, Kh Mahfuz ud;Obaydullah, M.;Hosen, Md. Akter
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.515-526
    • /
    • 2017
  • Recent trend is to use the lightweight concrete in the construction industry because it has several advantages over normal weight concrete. The Lightweight concrete can be produced from the industrial waste materials. In South East Asian region, researchers are very keen to use the waste materials such as oil palm shell (OPS) and palm oil clinker (POC) from the palm oil producing industries. Extensive research has been done on lightweight concrete using OPS or POC over the last three decades. In this paper the aggregate properties of OPS and POC are plotted in conjunction with mechanical and structural behavior of OPS concrete (OPSC) and POC concrete (POCC). Recent investigation on the use of crushed OPS shows that OPSC can be produced to medium and high strength concrete. The density of OPSC and POCC is around 20-25% lower than normal weight concrete. Generally, mechanical properties of OPSC and POCC are comparable with other types of lightweight aggregate concrete. It can be concluded from the previous study that OPSC and POCC have the noteworthy potential as a structural lightweight concrete.

A study on the Flexural Behavior of Structural Deck Plate using High-Strength Lightweight Concrete (고강도경량콘크리트를 사용한 구조용 Deck Plate의 휨거동에 관한 연구)

  • 김철환;최명신;안종문;김범조;소병규;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.505-512
    • /
    • 1998
  • The object of this study is investigated to flexural behavior of structural deck plate composite slabs using high-strength lightweight concrete. Test variables are concrete compressive strength (normal weight concrete 210kg/$\textrm{cm}^2$, lightweight concrete 270, 350kg/$\textrm{cm}^2$), topping concrete thickness (70, 75mm when span is 3.4m), deck plate depth (50, 75mm when topping concrete thickness is 70mm and span is 3.4m) and span(3.0, 3.4m). Test results are compared with current ACI Building Code(318-95). The test results are follows ; (1) a value of Ptest/Pcal is 1.27~1.39, (2) a mean value of $\delta$test/ $\delta$ACI is, 0.60 when deflection is reatched to maximam permissible computed deflection (L/360), and (3) ductility index are 3.61~6.85.

  • PDF

Development of Ultra-Lightweight High Strength Trench Using Lightweight Polymer Concrete

  • Sung, Chan-Yong;Kim, Young-Ik
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.7
    • /
    • pp.20-26
    • /
    • 2003
  • The ultra-lightweight high strength polymer concrete could be used for the drain structures under severe condition. In this study, materials used were unsaturated polyester resin, heavy calcium carbonate, artificial lightweight coarse aggregate and perlite. In the test results, the unit weight of the ultra-lightweight high strength polymer concrete was 946 kg f/$\textrm{m}^3$ and the compressive strength was appeared in 34.5 MPa. The compressive strength, splitting tensile strength, flexural strength, acid resistance and weather resistance were shown in excellently than that of the normal cement concrete. The draining trench had 1m length, 0.24 m width, 0.02 m thickness and 0.07 m height. The developed trench could be effectively used at the draining structures.

Compressive Properties of Amorphous Metal Fiber Reinforced Concrete Exposed to high Temperature

  • Lee, Jun-Cheol;Kim, Wha-Jung;Lee, Chang-Joon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.2
    • /
    • pp.183-193
    • /
    • 2012
  • Compressive property of high strength concrete with amorphous metal fibers subject to high temperature has been investigated. The measure of this investigation includes explosive spalling, weight loss, residual compressive strength, strain at peak stress, elastic modulus, and residual energy absorption capacity after exposure to $400^{\circ}C$, $600^{\circ}C$and $800^{\circ}C$. In addition to the amorphous metal fiber, two other types of fibers (polypropylene fiber and hooked-end steel fiber) were also included in this investigation for comparison. The experimental program was conducted with high strength concrete using several combinations of the fiber types. The testing result shows that the concrete with amorphous metal fibers plus polypropylene fibers shows a superior behavior than those using other combination or single fiber type ingredient.

Influence of the Kinds and the Content of Expansive Additive on the Properties of Shrinkage of High Performance Concrete (고성능 콘크리트의 수축특성에 미치는 팽창재 종류 및 혼입률의 영향)

  • 배정렬;홍상희;고경택;김성욱;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.349-354
    • /
    • 2003
  • The objective of this paper is to investigate the length change of high performance concrete using expansive additives to reduce autogenous shrinkage and drying shrinkage. The kinds and the contents of expansive additives are varied. The expansive additives are used made from Japan(CSA type;JEA), China(CSA type;CEA) and Korea(gypsum type; KEA), respectively. According to results, remarkable variations of the properties at fresh concrete are not found with dosage of expansive additives. For compressive strength, it decreases about 6-10% with expansive additives of 10%. Autogenous shrinkage decreases about 32%, and drying shrinkage does about 35%, respectively, with expansive additives of 5%, and about 68% and about 55%, with expansive additives of 10%. Accordingly, expansive additives demand requires 10% by cement weight in order to reduce shrinkage of high performance concrete more effectively in the sphere of this study, and JEA shows the best shrinkage reducing performance among the tested expansive additives.

  • PDF

A study on electrical and thermal properties of conductive concrete

  • Wu, Tehsien;Huang, Ran;Chi, Maochieh;Weng, Tsailung
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.337-349
    • /
    • 2013
  • Traditional concrete is effectively an insulator in the dry state. However, conductive concrete can attain relatively high conductivity by adding a certain amount of electronically conductive components in the regular concrete matrix. The main purpose of this study is to investigate the electrical and thermal properties of conductive concrete with various graphite contents, specimen dimensions and applied voltages. For this purpose, six different mixtures (the control mixtures and five conductive mixtures with steel fibers of 2% by weight of coarse aggregate and graphite as fine aggregate replacement at the levels of 0%, 5%, 10%, 15% and 20% by weight) were prepared and concrete blocks with two types of dimensions were fabricated. Four test voltage levels, 48 V, 60 V, 110 V, and 220 V, were applied for the electrical and thermal tests. Test results show that the compressive strength of specimens decreases as the amount of graphite increases in concrete. The rising applied voltage decreases electrical resistivity and increases heat of concrete. Meanwhile, higher electrical current and temperature have been obtained in small size specimens than the comparable large size specimens. From the results, it can be concluded that the graphite contents, applied voltage levels, and the specimen dimensions play important roles in electrical and thermal properties of concrete. In addition, the superior electrical and thermal properties have been obtained in the mixture adding 2% steel fibers and 10% graphite.