• Title/Summary/Keyword: High-volume

Search Result 6,457, Processing Time 0.034 seconds

The Study on Small Aircraft Transportation System in Higher Volume Opreations (소형항공기의 고밀도 운용방안 연구)

  • Kim, Hyun-Su;Yoo, Byeong-Seon;Kang, Ja-Young
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.2
    • /
    • pp.37-44
    • /
    • 2011
  • This paper summarizes the HVO concept and procedures, presents a summary of the research and results, and outlines areas where future HVO is required. This concept enables people to get their destinations through shortest paths with advanced air traffic control system and equipments. The concept's key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software which are needed for supporting flight information present on the high Way in the sky display and airborne internet. By assigning Self-Controlled Area which assume pilot have separation responsibility, controllers evaluated SATS HVO concept as a successful method on the view of reduced workload and increased traffic level on high volume operation.

Mechanial and Drying Shrinkage Properties of Polypropylene Fiber Reinforced High Flow Concrete (폴리프로필렌 섬유보강 고유동 콘크리트의 역학적 및 건조수축 특성)

  • Noh , Kyung-Hee;Sung , Chan-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.79-85
    • /
    • 2004
  • This study was performed to evalute mechanical and drying shrinkage properties of polypropylene fiber reinforced high flow concrete. The compressive strength and drying shrinkage ratio were increased with increasing the binder volume ratio and decreased with increasing the content of polypropylene fiber. The splitting tensile strength was increased with increasing the binder volume ratio and the content of polypropylene fiber. The flexural strength was increased with increasing the binder volume ratio and increased by the polypropylene fiber content 0.4%, but above the polypropylene fiber content 0.6% was decreased. This concrete can be used for high flow concrete.

A Study on the High Temperature Region Heat Transfer Coefficients for the Spray Cooling of Hot Flat Plates (평판 분무냉각 시의 고온역 열전달계수에 관한 연구)

  • Yoon, D.H.;Oh, C.;Yoon, S.H.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.25-32
    • /
    • 2000
  • In this paper, experiments investigating the high-temperature region heat transfer coefficients for the spray cooling of hot flat plates were performed by down spray water using flat spray nozzles. The heat transfer surface is made of copper and is 100mm in length and 40mm in width and 15mm in thickness. The experimental condition of spray are as follows: temperatures of the water droplets are T=20~$80^{\circ}C$ and droplets volume fluxes are D=0.001565~0.010438$m^3/m^2s$. Next, correlating equations for the heat transfer characteristics of spray cooling in the high temperature region are developed from the effects of droplets volume flux and the surface temperature of heat transfer plate.

  • PDF

ASR Effectiveness of High Volume Fly Ash Cementitious Systems Using Modified ASTM C 1260 Test Method

  • Shon, Chang-Seon;Kang, Soo-Geon;Kim, Young-Su
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.76-80
    • /
    • 2002
  • The role of high volume Class F fly ash in reducing expansion due to Alkali-Silica Reaction (ASR) was investigated. A series of modified ASTM C 1260 tests were performed under three different levels of NaOH normality, extending the test period to 28 days, using high- or low alkali cement, and Class F fly ash up to 58 % by mass of cement. A reactive siliceous fine aggregate was used. The test results confirm that HVFA replacement in a cementitious system significantly helps in controlling expansion caused by ASR.

  • PDF

The Strength Properties of Cement Matrix containing High-Volume Wasted Phosphogypsum with Binder Types (결합재의 종류에 따른 인산석고를 다량 함유한 경화체의 강도 특성)

  • Mun, Kyoung-Ju;Hyoung, Won-Kil;Park, Won-Chun;So, Seung-Young;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.881-884
    • /
    • 2006
  • Wasted phosphogypsum is a by-product from the phosphoric acid process of manufacturing fertilizers. It consists mainly of $CaSO_4{\cdot}2H_2O$ and contains some impurities. The purpose of this study is to utilize wasted phosphogypsum into an admixture for concrete products cured by steam This paper is to investigate the strength properties of cement composites containing high volume phosphogypsum. The cement composites were composed of OPC, phosphogypsum, fly-ash and granulated blast-furnace slag with activators. As a result, the strength of cement composites containing high volume wasted phosphogypsum were shown high level when granulated blast-furnace slag was mixed. Therefore, PG could be used as a steam curing admixture for concrete 2th production with reduction of OPC.

  • PDF

A CLASSIFICATION OF UNIQUELY DIFFERENT TYPES OF NUCLEAR FISSION GAS BEHAVIOR

  • HOFMAN GERARD L.;KIM YEON SOO
    • Nuclear Engineering and Technology
    • /
    • v.37 no.4
    • /
    • pp.299-308
    • /
    • 2005
  • The behavior of fission gas in all major types of nuclear fuel has been reviewed with an emphasis on more recently discovered aspects. It is proposed that the behavior of fission gas can be classified in a number of characteristic types that occur at a high or low operating temperature, and/or at high or low fissile burnup. The crystal structure and microstructure of the various fuels are the determinant factors in the proposed classification scheme. Three types of behavior, characterized by anisotropic $\alpha$-U, high temperature metallic $\gamma$-U, and cubic ceramics, are well-known and have been extensively studied in the literature. Less widely known are two equally typical low temperature kinds: one associated with fission induced grain refinement and the other with fission induced amorphization. Grain refinement is seen in crystalline fuel irradiated to high burnup at low temperatures, whereas breakaway swelling is observed in amorphous fuel containing sufficient excess free-volume. Amorphous fuel, however, shows stable swelling if insufficient excess free-volume is available during irradiation.

Effect of fiber and aggregate size on mode-I fracture parameters of high strength concrete

  • Kumar, Ch.Naga Satish;Krishna, P.V.V.S.S.R.;Kumar, D.Rohini
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.613-624
    • /
    • 2017
  • In this paper, an experimental investigation was carried out to study the effect of volume fraction of fiber and maximum aggregate size on mode-I fracture parameters of high strength concrete. Total of 108 beams were tested on loading frame with three point loading, the variables in the high strength concrete beams are aggregate size (20 mm, 16 mm and 10 mm) and volume fraction of fibers (0%, 0.5%, 1% and 1.5%). The fracture parameters like fracture energy, brittleness number and fracture process zone were analyzed by the size effect method (SEM). It was found that fracture energy (Gf) increases with increasing the Maximum aggregate size and also increasing the volume of fibers, brittleness number (${\beta}$) decreases and fracture process zone (CF) increases.

Fracture behavior of Thixoformed 357-T5 Semi-solid Al alloys (반응고 357-T5 합금의 파괴 특성)

  • Park, C.;Kim, S.S.;Bae, M.H.;Kang, S.W.;Kwon, Y.N.;Lee, Y.S.;Lee, J.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.65-69
    • /
    • 2003
  • The effects of microstructural features on the fracture behaviors, including impact, high-cycle fatigue, fatigue and crack propagation, of thixoformed 357-T5 (Al-7%Si-0.6%Mg) alloy were examined. The resistance to impact and high-cycle fatigueof thixoformed 357-T5 tended to improve greatly with increasing solid volume fraction. An almost three-fold increase in impact energy value was, for example, observed with increasing solid volume fraction from 59 to 70%. The improvement in both impact and fatigue properties of thixoformed 357-75 with increasing solid volume fraction in the present study appeared to be related to the magnitude of stress concentration at the interface between primary and eutectic phase, by which the fracture process was largely influenced. Based on the fractographic and micrographic observations, the mechanism associated with the beneficial effect of high solid volume fraction in thixoformed 357-T5 alloy was discussed.

  • PDF

A Study on the Diesel Spray Evaporation and Combustion Characteristics in Constant Volume Chamber (정적연소실내의 디젤분무증발과 연소특성에 관한 연구)

  • Kim, S.H.;Kim, S.J.;Lee, M.B.;Kim, E.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.6
    • /
    • pp.102-109
    • /
    • 1994
  • As a fundamental study to apply high pressure injection system to direct injection diesel engine, fuel injection system and constant volume combustion chamber were made and the behaviors of evaporating spray with the variation of injection pressure and the ambient gas temperature were observed by using high speed camera, and the combusion characteristics with the variation of injection pressure and A/F ratio were analyzed. As injection pressure increases, spray tip penetration and spray angle increase and, as a results spray volume increases. This helps an uniform mixing of fuel and air. Spray liquid core length decreases as ambient gas temperature increases, while it decreases as injection pressure increases but the effect of ambient gas temperature is dorminant. As injection pressure increases, ignition delay is shortened and combustion rate being raised, maximum heat release rate increases. It become clear that High injection pressure has high level of potential to improve the performance of DI-diesel engine.

  • PDF

Optimization of Flowable Fill with High Volume Fly Ash Conten (다량의 플라이애시를 사용한 고유동 충전재의 최적배합설계)

  • 원종필
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.81-90
    • /
    • 1999
  • The purpose of this study is to examine the uses of fly ash asa type of construction material. This paper presents the results of research performed to identify optimum mix proportions for production of lowable fill with high volume fly ash content . The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The flowable fill with high volume fly ash content was investigated for strength and flowability characteristics. Tests were carried out on flowable fill designed to have 10 ~15kgf/$\textrm{cm}^2$ compressive strength at 28 days with fly ash contents of approximately 260kgf/㎥. Slump was held at 25$\pm$1cm for all mixtures produced to range from 5kgf/$\textrm{cm}^2$ to 14kgf/$\textrm{cm}^2$ compressive strengths at 28 days. To produce flowable fill with high volume fly ash , first the influential variables were identified in an experimental study based on factorial design. Among the proportioning variables investigated, cement ,fly ash, and sand contents were found to have statistically significant effect on strength and slump of flowable fill . Subsequently, response surface analysis techniques were used to devise an experimental program that helped determine the optimum combinations of the selected influential variables based on material properties and cost. The optimized flowable fill were then technically evaluated. It is shown that flowable fill has acceptable compressive strength , slump flow, hardening time, and permeability.

  • PDF