• Title/Summary/Keyword: High-volume

Search Result 6,457, Processing Time 0.04 seconds

High Strain-rate Deformation Behavior of NiAl/Ni Micro-laminated Composites (NiAl/Ni 미세적층복합재료의 고속변형거동)

  • Kim Hee-Yeoun;Kim Jin-Young;Jeong Dong-Seok;Enoki Manabu;Hong Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.237-240
    • /
    • 2004
  • High strain-rate deformation behavior of NiAl/Ni micro-laminated composites was characterized by split hopkins on pressure bar(SHPB). When the strain rate increased, the compressive stress of micro-laminated composites were increased a little. When the intermetallic volume fraction increased, the compressive stress of micro-laminated composites increased linearly irrespective of strain rate. Absorbed energy during the quasi-static and SHPB tests was calculated from the integrated area of stress-strain curve. Absorbed energy of micro-laminated composites deviated from the linearity in terms of the intermetallic volume fraction but merged to the value of intermetallic as the strain rate increased. This was due to high tendency of intermetallic layer for the localization of shear deformation at high strain rate. Microstructure showing adibatic shear band(ASB) confirmed that the shear strain calculated from the misalignment angle of each layer increased and ASB width decreased when the intermetallic volume fraction. Simulation test impacted by tungsten heavy alloy cylinder resulted that the absorbed energies multiplied by damaged volume of micro-laminated composites were decreased as the intermetallic volume fraction increased. Fracture mode were changed from delamination to single fracture when the intermetallic volume fraction and this results were good matched with previous results[l] obtained from the fracture tests.

  • PDF

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

A Study on the Various Volume Reducing Methods for Wasted EPS Foam (폐스티로폼의 감용방식에 관한 연구)

  • Lim, Joong-Yeon;Choi, Ho-Joon;Hwang, Beong-Bok
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2003.10a
    • /
    • pp.165-169
    • /
    • 2003
  • Current volume reduction methods for wasted expandable polystyrene (EPS) foam are summarized and compared each other. Wasted EPS foam has not been recycled effectively because of its large volume to weight ratio. This has prevented from its proper recycling because of high cost of transportation to recycling plant. Successful recycling of wasted EPS foam results directly from successful, i.e. economically and environmentally, volume reduction of wasted EPS foam. This paper deals with various methods for volume reduction methods of wasted EPS foam. Five typical methods of volume reduction are introduced and they are compared each other in terms of expected PS properties after volume reduction, cost effectiveness of each process, possible effects on environment caused by the volume reduction process, and possible recycled products. The methods include thermal, solvent, far infrared and mechanical compaction. Comparison in this paper is made mostly in qualitative manner. The focus in this study is concentrated on summarizing and comparing existing methods of volume reduction for wasted EPS foam.

  • PDF

Hydration of High-volume GGBFS Cement with Anhydrite and Sodium Sulfate (경석고 및 황산나트륨을 함유한 하이볼륨 고로슬래그 시멘트의 수화특성)

  • Moon, Gyu-Don;Choi, Young-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • In order to use the high-volume slag cement as a construction materials, a proper activator which can improve the latent hydraulic reactivity is required. The dissolved aluminum silicon ions from ground granulated blast furnace slag (GGBFS) react with sulfate ions to form ettringite. The proper formation of ettringite can increase the early-age strength of high-volume GGBFS (80%) cement. The aim of this study is to investigate the hydration properties with sulfate activators (sodium sulfate, anhydrite). In this paper, the effects of $Na_2SO_4$ and $CaSO_4$ on setting, compressive strength, hydration, micro-structure were investigated in high-volume GGBFS cement and compared with those of without activator. Test results indicate that equivalent $SO_3$ content of 3~5% improve the early-age hydration properties such as compressive strength, heat evolution rate, micro-pore structure in high-volume GGBFS cement.

Temperature Dependence of Volume Resistivity on Epoxy Nano-composites (에폭시 나노컴퍼지트 체적 고유저항의 온도 의존성)

  • Kim, Chang-Hoon;Lee, Young-Sang;Kang, Yong-Gil;Park, Hee-Doo;Shin, Jong-Yeol;Hong, Jin-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.834-838
    • /
    • 2011
  • This research shows the electrical characteristic using excellent epoxy nano-composite of MgO 5.0 wt% and $SiO_2$ 0.4 wt% in mechanical strength test depending on nano-additive. First of all, volume resistance depending on nano-additive and temperature using high resistance meter (HP. 4329A) by increasing 10, 100, 1,000 V of applying voltage was measured. Moreover, temperature range of $25{\sim}120^{\circ}C$ with virgin sample was tested using TO-9B oven by Ando Company. The result showed that virgin and the samples added with MgO and $SiO_2$ had similar value of volume resistance in low temperature and low electric field region and reduced with slow slope. The nano-composite's volume resistance of sample added with MgO and $SiO_2$ had higher value than virgin sample's volume resistance in high temperature region more than $80^{\circ}C$. Moreover, the slope has steeply reduced. The volume resistance of sample added with MgO 5.0 wt% was $8.38{\times}10^{13}\;{\Omega}{\cdot}cm$ and it was 6.8 times more than virgin sample in high temperature at $120^{\circ}C$. The insulation characteristics were constant although filler has changed in low temperature region. But, in high temperature region, the value of volume resistance of sample with MgO 5.0 wt% was 7.6 times more than the virgin sample's volume resistance.

Dose and Image Evaluation of Pediatric Head Image according to CT Scan Mode and kVp Changes (CT Scan Mode와 관전압 변경에 따른 소아 두부 영상의 선량 및 영상평가)

  • Byeong-Je Kim;Dong-Hyun Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.6
    • /
    • pp.801-808
    • /
    • 2023
  • In order to minimize radiation exposure and secure diagnostic value images during CT examination of the head of children, the usefulness of volume axial mode is evaluated through comparison and analysis of exposure dose and images of volume axial mode, high pitch mode, and helical mode. Image evaluation and dose evaluation were performed in CT high pitch mode, helical mode, and volume axial mode for infants under the age of 1 according to the voltages of 70, 80, and 100 kVp tubes. The image evaluation was conducted by comparing image quality by setting ROI for each image, calculating SNR and CNR, using ONE-WAY (ANOVA) to evaluated statistical significance, and cross-examining the dose evaluation using DLP values displayed in the Dose Report. When inspected using volume axial mode, DLP values were generally low, and SNR and CNR values differed by ROI and kVp. When volume axial mode evaluated the quality of the image compared to other scan modes, the difference is not uniform. For the reason, certain modes are not considered excellent, but the exposure dose was reduced the most in terms of dose. In addition, the point that the volume axial mode can be examined at its original location, short scanning time and needless of table movement is useful for CT tests for children under 1 year of age with high radiation sensitivity.

A study on the Formation of Adiabatic Shear Band of Tungsten Heavy Alloys (텅스텐 중합금의 단열전단밴드 형성 연구)

  • 이승우;문갑태;홍성인
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.05a
    • /
    • pp.187-190
    • /
    • 2002
  • To study adiabatic shear band formation of tungsten heavy alloys, 5 prismatic specimens are loaded by high velocity impacts and treated as plane strain problems. Their volume percent of tungsten particles in WHA are 81%, 93% and 97% respectively and for the fixed 81% volume percent, small size particle model, large size particle model, undulated particle models are considered and then, the effects of particle's volume ratio, geometry and size to the formation of shear band are discussed.

  • PDF

Viscosity and Volume Effects on Convective Flows in PGSE-NMR Self-Diffusion Measurements at High Temperature

  • Seo, Ji Hye;Chung, Kee-Choo
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.16 no.2
    • /
    • pp.122-132
    • /
    • 2012
  • The effects of the sample viscosity and volume on the convective flows induced by temperature gradient in PGSE-NMR self-diffusion measurements at high temperature have been investigated. The experimental results showed that the viscosity of the liquid sample strongly affects the magnitude of the convective flows as well as the diffusion coefficient itself. It was also found that the convective flows increase as the sample volume increase.

A study on the quality performances of the high flowing concrete for binder types (분체의 종류에 따른 고유동 콘크리트의 품질성능에 관한 연구)

  • 권영호;이현호;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-572
    • /
    • 2002
  • This research investigates experimentally an effect on the quality performances of the high flowing concrete according to binder types. The purpose of this study is to determine the optimum mix proportion of the high flowing concrete having good flowability, viscosity and no-segregation. For this purpose, two types using belite cement+lime stone powder(LSP) and furnace slag cement+lime stone powder are selected and tested by design factors including water cement ratio, fine and coarse aggregate volume ratio. As test results of this study, the optimum mix proportion for binder types is as followings. 1) One type based belite cement ; water cement ratio $51^{\circ}C$, fine aggregate volume ratio $43^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $42.7^{\circ}C$. 2) Another type based slag cement : water cement ratio $41^{\circ}C$, fine aggregate volume ratio $47^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $13.5^{\circ}C$.

  • PDF

Effect on the Volume Resistivity of Silicone Rubber due toTemperature Variation (온도변화가 실리콘 고무의 체적고유저항에 미치는 영향)

  • Kim, T.Y.;Ku, K.M.;Cho, K.S.;Lee, C.H.;Hong, J.W.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.55-58
    • /
    • 2002
  • In this paper, the volume resistivity properties of silicone rubber investigated due to temperature dependence. And the measurement of volume resistivity is measured from 1, 5 and 10 minutes when the each applied voltage, for example, DC 100[V], 250[V], 500[V] and 1000[V], is applied. according to the step voltage application method. As a result, The volume resistivity is higher high voltage than low voltage at the room temperature, but is higher low voltage than high voltage at high temperature.

  • PDF