• Title/Summary/Keyword: High-volume

Search Result 6,457, Processing Time 0.032 seconds

A Design Criteria for Pond Management at Golf Course in Terms of Satisfaction (골프장 연못의 관리만족도를 위한 설계기준)

  • 김동찬;권오원
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.5
    • /
    • pp.84-91
    • /
    • 2001
  • The purpose of this thesis is to search for appropriate design elements to manage ponds on golf courses. This paper showed that a variable, width, and volume have significant influence on satisfaction(Sig 0.001). This research investgated golf courses in Kyung-ki province. In short, we measured the physical design elements of ponds to bring out major factors which could determine satisfaction of golf courses for golfcourse manager(greenkeeper). The results between satisfaction and physical variable came out as follows; 1, Golfcourse managers(Green keepers) responded to questions that they were satisfied in only 29.9% of the ponds. We found that they considered management very highly. we could evaluated the value of necessity and importance are high, that is importance to manage ponds 2. Some physical design elements(volume, width) increased dependent variable(satisfaction) and others(length, area, circumference, index of shape) decreased dependent variable(satisfaction) 3. Volume has an influence on dependent variable more than depth on index of shape. 4 If the result of \`index of shape\` decreased, the result of \`management satisfaction\` would be high, and when volume is 8500ton∼17000ton, depth is 27m∼3.1m, \`management satisfaction\` would be high. The research findings can be used for planning and designing of golfcourses for designers, and by management for greenkeepers, and will provide pertinent design elements far design of golfcourses. We suggest that the interrelation between ponds and strategic play must be examined in future research.

  • PDF

Theoretical Analysis and Experimental Characterization of DoD Metal-Jet System (DoD 메탈젯 시스템의 이론적 해석 및 실험적 분석)

  • Lee, Taik-Min;Kang, Tae-Goo;Yang, Jeong-Soon;Jo, Jeong-Dai;Kim, Kwang-Young;Choi, Byung-Oh;Kim, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.11-17
    • /
    • 2007
  • In this paper, we present a design, analysis, fabrication and performance test of the novel DoD metal-jet system for application to the high-density and high-temperature-melting materials. The theoretical analysis of the metal-jet nozzle system is derived by using electro-mechanical analogy. Based on the theoretical analysis results, we design the metal-jet print head system and fabricate the metal-jet system, which can eject the droplet of lead-free metal solder in high-temperature. In the experimental test, we set up the test apparatus for visualization of the droplet ejection and measure the ejected droplet volume and velocity. As a result, the diameter, volume and the velocity of the ejected droplet are about 65 $\mu$m $\sim$ 70 $\mu$m, 145p1 $\sim$ 180 pl and 4m/s, which shows quite good agreement with the theoretical analysis results of the 75 $\mu$m-diameter and 220 pl-volume of droplet. In comparison with the experimental result, the errors of diameter and volume are 7% $\sim$ 13% and 18 $\sim$ 34%, respectively.

Effect of Subzero Treatment on the Mechanical Properties of Cold-Rolled High Manganese Austenitic Stainless Steel (냉간압연한 고 Mn 오스테나이트계 스테인리스강의 기계적 성질에 미치는 서브제로처리의 영향)

  • Hwang, T.H.;Jung, M.H.;Lee, J.Y.;Lee, H.B.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.5
    • /
    • pp.233-238
    • /
    • 2012
  • The effect of subzero treatment on the mechanical properties of cold rolled high manganese austenitic stainless steel was investagated. ${\alpha}$'-martensite was formed by cold rolling, and it was formed with surface relief and specific direction or crossing each other. The volume fraction of martensite increased by subzero treatment, and it was increased with longer time of subzero treatment and higher temperature of subzero treatment. The hardness and strength increased by subzero treatment, while the elongation decreased. With the increase of volume fraction of martensite, the hardness and strength was increased steeply with proportional relationship, elongation was decreased slowly. The results show that the hardness and strength was strongly controlled by the volume fraction of martensite, and the elongation was affected by transformation behavior of deformation induced martensite in the initial stage of deformation.

pH- and Temperature-Sensitive Bifunctional Hydrogels of N-Isopropylacrylamide and Sulfadimethoxine Monomer

  • Lee, Jin-Woo;Lee, Doo-Sung;Kim, Sung-Wan
    • Macromolecular Research
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2003
  • pH- and temperature-sensitive bifunctional hydrogels composed of N-isopropylacrylamide (NiPAAm) and a sulfadimethoxine monomer (SDM) derived from sulfadimethoxine were prepared. These hydrogels exhibit simultaneous pH- and temperature-induced volume-phase transitions. The pH-induced volume-phase transition behavior is produced by the ionization/deionization of SDM and is very sharp. In the high pH region, the ionization of SDM induces swelling of the hydrogels. In the low pH region, the deionization of SDM induces deswelling of the hydrogels. The temperature-induced volume-phase transition behavior of the bifunctional hydrogels exhibits negative thermosensitivity because of the NiPAAm component. The hydrogels swell even at low pH as the temperature decreases. The hydrogels swell at low temperature and high pH, and deswell at high temperature and low pH. The volume of the hydrogels dependl on the balance of the swelling and deswelling produced by the two competing stimuli, pH and temperature.

Development of Short-Run Standardized Control Charts and Acceptance Control Charts Classified by the Demand Volume and Variety (수요량과 다양성 패턴에 의해 유형화된 단기간 표준화 관리도와 단기간 합격판정 관리도의 개발)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.4
    • /
    • pp.255-263
    • /
    • 2010
  • The research developes short-run standardized control charts(SSCC) and short-run acceptance control charts(SACC) under the various demand patterns. The demand patterns considered in this paper are three types such as high-variety and repetitive low-volume pattern, extremely-high-variety and nonrepetitive low-volume pattern, and high-variety and extremely-low-volume pattern. The short-run standardized control charts developed by extending the long-run ${\bar{x}}$-R, ${\bar{x}}$-s and I-MR charts have strengths for practioners to understand and use easily. Moreover, the short-range acceptance control charts developed in the study can be efficiently used through combining the functions of the inspection and control chart. The weighting schemes such as Shewhart, moving average (MA) and exponentially weighted moving average (EWMA) can be considered by the reliability of data sets. The two types according to the use of control chart are presented in the short-range standardized charts and acceptance control charts. Finally, process capability index(PCI) and process performance index(PPI) classified by the demand patterns are presented.

Aging: Degradation of Permeability in Microporous Polymeric Membranes (물리적 노화로 인한 미세 다공성 중합체의 투과성 저하)

  • Kim, Kyunam;Koh, Dong-Yeun
    • Membrane Journal
    • /
    • v.29 no.4
    • /
    • pp.191-201
    • /
    • 2019
  • Before the commercialization of polymeric membranes applicable for industrial application, the homework remains for the high-performance polymers to overcome the practical challenge: long-term stability for prolonged service time. Polymers of intrinsic microporosity (PIMs), exhibiting exceptionally high fractional free volume and high permeability, are susceptible to physical aging where the extra volume created by the inefficient ladder-type packing will lead them from the volumetric equilibrium and reduce the free volume/permeability over time. Here, we will re-examine the physical aging of polymers of intrinsic microporosity, and discuss some of the most prominent attempts to mitigate physical aging in PIMs.

Flexural Performance Evaluation of HPFRCC Using Hybrid PVA Fibers (하이브리드 PVA 섬유를 이용한 HPFRCC의 휨 성능 평가)

  • Kim, Young-Woo;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.753-756
    • /
    • 2008
  • HPFRCC (High-Performance Fiber Reinforced Cementitious Composites), which is relatively more ductile and has the characteristic of high toughness with high fiber volume fractions, can be used in structures subjected to extreme loads and exposed to durability problems. In the case of using PVA(polyvinyl alcohol) fibers, it is noted by former studies that around 2% fiber volume fractions contributes to the most effective performance at HPFRCC. In this study, therefore, compressive and flexural tests were implemented to evaluate the compressive and flexural capacities of HPFRCC while the total fiber volume fractions was fixed at 2% and two different PVA fibers were used with variable fiber volume fractions to control the micro-crack and macro-crack with short and long fibers, respectively. Moreover, specimens reinforced with steel and PVA fiber simultaneously were also tested to estimate their behavior and finally find out the optimized mixture. In the result of these experiments, the specimen consists of 1.6% short fibers (REC 15) and 0.4% long fiber (RF4000) outperformed other specimens. When a little steel fibers added to the mixture with 2% PVA fibers, the flexural capacity was increased, however, when high steel fiber volume fractions applied, the flexural capacity was decreased.

  • PDF

Study on volume reduction of radioactive perlite thermal insulation waste by heat treatment with potassium carbonate

  • Chou, Yi-Sin;Singh, Bhupendra;Chen, Yong-Song;Yen, Shi-Chern
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.220-225
    • /
    • 2022
  • Perlite is one of the major constituents of the radioactive thermal insulation waste (RTIW) originating from nuclear power plants and, for proper waste management, a significant reduction in its volume is required prior to disposal. In this work, the volume reduction of perlite is studied by high-temperature treatment method with using K2CO3 as a flux. The perlite is ground with 0-30 wt% K2CO3, and differential thermal analysis/thermogravimetric analysis is used to monitor the glass transition temperature (Tg) and weight loss. The Tg varied between ~772.2 and 837.1 ℃ with the minima at ~643.5 ℃ with the addition of ~10 wt% K2CO3. It is observed that compared to the pure perlite the volume reduction ratio (VRR) increases with the addition of K2CO3. The VRR of 11.20 is observed with 5 wt% K2CO3 at 700 ℃, as compared to VRR of 5.56 without K2CO3 at 700 ℃. The X-ray photoelectron spectroscopy and scanning electron microscopy are used to characterize perlite samples heat-treated without/with 5 wt% K2CO3 at 700 ℃. Moreover, the atomic absorption spectroscopy indicates that the proposed heat-treatment procedure is able to completely retain the radionuclides present in the perlite RTIW.

GPU based Maximum Intensity Projection using Clipping Plane Re-rendering Method (절단면 재렌더링 기법을 이용한 GPU 기반 MIP 볼륨 렌더링)

  • Hong, In-Sil;Kye, Hee-Won;Shin, Yeong-Gil
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.3
    • /
    • pp.316-324
    • /
    • 2007
  • Maximum Intensity Projection (MIP) identifies patients' anatomical structures from MR or CT data sets. Recently, it becomes possible to generate MIP images with interactive speed by exploiting Graphics Processing Unit (GPU) even in large volume data sets. Generally, volume boundary plane is obliquely crossed with view-aligned texture plane in hardware-texture based volume rendering. Since the ray sampling distance is not increased at volume boundary in volume rendering, the aliasing problem occurs due to data loss. In this paper, we propose an efficient method to overcome this problem by Re-rendering volume boundary planes. Our method improves image quality to make dense distances between samples near volume boundary which is a high frequency area. Since it is only 6 clipping planes are additionally needed for Re-rendering, high quality rendering can be performed without sacrificing computational efficiency. Furthermore, our method couldbe applied to Minimum Intensity Projection (MinIP) volume rendering.

  • PDF

Effect of Difference in Irrigation Amount on Growth and Yield of Tomato Plant in Long-term Cultivation of Hydroponics (장기 수경재배에서 급액량의 차이가 토마토 생육과 수량 특성에 미치는 영향)

  • Choi, Gyeong Lee;Lim, Mi Young;Kim, So Hui;Rho, Mi Young
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.444-451
    • /
    • 2022
  • Recently, long-term cultivation is becoming more common with the increase in tomato hydroponics. In hydroponics, it is very important to supply an appropriate nutrient solution considering the nutrient and moisture requirements of crops, in terms of productivity, resource use, and environmental conservation. Since seasonal environmental changes appear severely in long-term cultivation, it is so critical to manage irrigation control considering these changes. Therefore, this study was carried out to investigate the effect of irrigation volume on growth and yield in tomato long-term cultivation using coir substrate. The irrigation volume was adjusted at 4 levels (high, medium high, medium low and low) by different irrigation frequency. Irrigation scheduling (frequency) was controlled based on solar radiation which measured by radiation sensor installed outside the greenhouse and performed whenever accumulated solar radiation energy reached set value. Set value of integrated solar radiation was changed by the growing season. The results revealed that the higher irrigation volume caused the higher drainage rate, which could prevent the EC of drainage from rising excessively. As the cultivation period elapsed, the EC of the drainage increased. And the lower irrigation volume supplied, the more the increase in EC of the drainage. Plant length was shorter in the low irrigation volume treatment compared to the other treatments. But irrigation volume did not affect the number of nodes and fruit clusters. The number of fruit settings was not significantly affected by the irrigation volume in general, but high irrigation volume significantly decreased fruit setting and yield of the 12-15th cluster developed during low temperature period. Blossom-end rot occurred early with a high incidence rate in the low irrigation volume treatment group. The highest weight fruits was obtained from the high irrigation treatment group, while the medium high treatment group had the highest total yield. As a result of the experiment, it could be confirmed the effect of irrigation amount on the nutrient and moisture stabilization in the root zone and yield, in addition to the importance of proper irrigation control when cultivating tomato plants hydroponically using coir substrate. Therefore, it is necessary to continue the research on this topic, as it is judged that the precise irrigation control algorithm based on root zone-information applied to the integrated environmental control system, will contribute to the improvement of crop productivity as well as the development of hydroponics control techniques.