DOI QR코드

DOI QR Code

Aging: Degradation of Permeability in Microporous Polymeric Membranes

물리적 노화로 인한 미세 다공성 중합체의 투과성 저하

  • Kim, Kyunam (Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology) ;
  • Koh, Dong-Yeun (Department of Chemical and Biomolecular Engineering (BK-21 Plus), Korea Advanced Institute of Science and Technology)
  • 김규남 (한국과학기술원 생명화학공학과 (BK-21 플러스)) ;
  • 고동연 (한국과학기술원 생명화학공학과 (BK-21 플러스))
  • Received : 2019.08.15
  • Accepted : 2019.08.29
  • Published : 2019.08.31

Abstract

Before the commercialization of polymeric membranes applicable for industrial application, the homework remains for the high-performance polymers to overcome the practical challenge: long-term stability for prolonged service time. Polymers of intrinsic microporosity (PIMs), exhibiting exceptionally high fractional free volume and high permeability, are susceptible to physical aging where the extra volume created by the inefficient ladder-type packing will lead them from the volumetric equilibrium and reduce the free volume/permeability over time. Here, we will re-examine the physical aging of polymers of intrinsic microporosity, and discuss some of the most prominent attempts to mitigate physical aging in PIMs.

산업 응용에 적용할 수 있는 중합체 막의 상용화 전에, 고성능 중합체가 실질적인 도전, 즉 연장된 서비스 시간에 대한 장기 안정성을 극복해야하는 과제가 남아있다. 매우 높은 분수 자유 부피(fractional free volume) 및 높은 투과성을 나타내는 고유한 미세 다공성 중합체(polymers of intrinsic microporosity)는 비효율적 무작위 패킹에 의해 생성된 여분의 부피가 물질의 부피적 평형에서 멀어짐과 동시에, 다시 부피적 평형 상태로 복귀하려는 특성, 즉 자유 부피를 줄여가는 특정으로 인해 투과성을 감소시키는 물리적 노화에 영향을 받기 쉽다. 본 논문에서 우리는 미세 다공성 고분자의 물리적 노화를 재검토하고 PIM에서 물리적 노화를 완화하려는 가장 두드러진 시도 중 일부를 논의할 것이다.

Keywords

References

  1. D. S. Sholl, "Seven chemical separations to change the world", Nature, 532(7600), 435 (2016).
  2. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320(1-2), 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  3. D. F. Sanders et al., "Energy-efficient polymeric gas separation membranes for a sustainable future: A review", Polymer (Guildf)., 54(18), 4729 (2013). https://doi.org/10.1016/j.polymer.2013.05.075
  4. S. Brueske, C. Kramer, and A. Fisher, "Bandwidth study on energy ese and potential energy saving opportunities in U.S. petroleum refining", U.S. Dep. Energy, 100 (2015).
  5. J. Christopher Thomas, J. E. Trend, N. A. Rakow, M. S. Wendland, R. J. Poirier, and D. M. Paolucci, "Optical sensor for diverse organic vapors at ppm concentration ranges", Sensors, 11(3), 3267 (2011). https://doi.org/10.3390/s110303267
  6. Y. Yang, C. Y. Chuah, and T. H. Bae, "Polyamine-appended porous organic polymers for efficient post-combustion $CO_2$ capture", Chem. Eng. J., 358 (September 2018), 1227 (2019). https://doi.org/10.1016/j.cej.2018.10.122
  7. M. Checky et al., "Evaluation of a passive optical based end of service life indicator (ESLI) for organic vapor respirator cartridges", J. Occup. Environ. Hyg., 13(2), 112 (2016). https://doi.org/10.1080/15459624.2015.1091956
  8. R. Williams et al., "A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity derived from Troger's base polymerization", J. Mater. Chem. A, 6(14), 5661 (2018). https://doi.org/10.1039/C8TA00509E
  9. P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. Mckeown, K. J. Msayib, and C. E. Tattershall, "Polymers of intrinsic microporosity (PIMs): Robust, solution-processable, organic nanoporous materials", Chem. Commun., 2, 230 (2004). https://doi.org/10.1039/B817206D
  10. R. Swaidan, B. Ghanem, and I. Pinnau, "Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations", ACS Macro Lett., 4(9), 947 (2015). https://doi.org/10.1021/acsmacrolett.5b00512
  11. I. Rose et al., "Polymer ultrapermeability from the inefficient packing of 2D chains", Nat. Mater., 16(9), 932 (2017). https://doi.org/10.1038/nmat4939
  12. M. Carta et al., "Triptycene induced enhancement of membrane gas selectivity for microporous Troger's base polymers", Adv. Mater., 26(21), 3526 (2014). https://doi.org/10.1002/adma.201305783
  13. R. Swaidan, B. Ghanem, E. Litwiller, and I. Pinnau, "Physical aging, plasticization and their effects on gas permeation in 'rigid' polymers of intrinsic microporosity", Macromolecules, 48(18), 6553 (2015). https://doi.org/10.1021/acs.macromol.5b01581
  14. B. S. Ghanem, N. B. McKeown, P. M. Budd, J. D. Selbie, and D. Fritsch, "High-performance membranes from polyimides with intrinsic microporosity", Adv. Mater., 20(14), 2766 (2008). https://doi.org/10.1002/adma.200702400
  15. B. S. Ghanem, R. Swaidan, E. Litwiller, and I. Pinnau, "Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation", Adv. Mater., 26(22), 3688 (2014). https://doi.org/10.1002/adma.201306229
  16. R. J. Swaidan, B. Ghanem, R. Swaidan, E. Litwiller, and I. Pinnau, "Pure- and mixed-gas propylene/propane permeation properties of spiro- and triptycene-based microporous polyimides", J. Membr. Sci., 492, 116 (2015). https://doi.org/10.1016/j.memsci.2015.05.044
  17. Z. X. Low, P. M. Budd, N. B. McKeown, and D. A. Patterson, "Gas permeation properties, physical aging, and its mitigation in high free volume glassy polymers", Chem. Rev., 118(12), 5871 (2018). https://doi.org/10.1021/acs.chemrev.7b00629
  18. J. Kurchan, "In and out of equilibrium", Nature, 433 (7023), 222 (2005). https://doi.org/10.1038/nature03278
  19. L. Cui, W. Qiu, D. R. Paul, and W. J. Koros, "Physical aging of 6FDA-based polyimide membranes monitored by gas permeability", Polymer (Guildf)., 52(15), 3374 (2011). https://doi.org/10.1016/j.polymer.2011.05.052
  20. R. Swaidan, B. Ghanem, E. Litwiller, and I. Pinnau, "Physical aging, plasticization and their effects on gas permeation in 'rigid' polymers of intrinsic microporosity", Macromolecules, 48(18), 6553 (2015). https://doi.org/10.1021/acs.macromol.5b01581
  21. L. C. E. Struik, "Physical aging in plastics and other glassy materials", Polym. Eng. Sci., 17(3), 165 (1977). https://doi.org/10.1002/pen.760170305
  22. I. M. Hodge, "Physical aging in polymer glasses (Frontiers in materials science)", Science, 267(5206), 1945 (1995). https://doi.org/10.1126/science.267.5206.1945
  23. W. J. Koros and G. K. Fleming, "Membrane-based gas separation", J. Membr. Sci., 231(2), 171 (1993).
  24. H. B. Park, J. Kamcev, L. M. Robeson, M. Elimelech, and B. D. Freeman, "Maximizing the right stuff: The trade-off between membrane permeability and selectivity", Science, 356(6343), 1138 (2017).
  25. W. Qiu et al., "Hyperaging tuning of a carbon molecular sieve hollow fiber membrane with extraordinary gas separation performance and stability", Angew. Chemie Int. Ed., 1 (2019).
  26. L. Xu, M. Rungta, and W. J. Koros, "$Matrimid^{(R)}$ derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation", J. Membr. Sci., 380(1-2), 138 (2011). https://doi.org/10.1016/j.memsci.2011.06.037
  27. I. Menendez and A. B. Fuertes, "Aging of carbon membranes under different environments", Carbon N. Y., 39(5), 733 (2001). https://doi.org/10.1016/S0008-6223(00)00188-3
  28. C. W. Jones and W. J. Koros, "Regeneration following organic exposure", Carbon N. Y., 32(8), 1427 (1994). https://doi.org/10.1016/0008-6223(94)90136-8
  29. C. M. Zimmerman, A. Singh, and W. J. Koros, "Tailoring mixed matrix composite membranes for gas separations", J. Membr. Sci., 137(1-2), 145 (1997). https://doi.org/10.1016/S0376-7388(97)00194-4
  30. C. H. Lau et al., "Ending aging in super glassy polymer membranes", Angew. Chemie - Int. Ed., 53(21), 5322 (2014). https://doi.org/10.1002/anie.201402234
  31. C. H. Lau et al., "Gas-separation membranes loaded with porous aromatic frameworks that improve with age", Angew. Chemie - Int. Ed., 54(9), 2669 (2015). https://doi.org/10.1002/anie.201410684
  32. C. H. Lau et al., "Tailoring physical aging in super glassy polymers with functionalized porous aromatic frameworks for $CO_2$ capture", Chem. Mater., 27(13), 4756 (2015). https://doi.org/10.1021/acs.chemmater.5b01537
  33. J. Liu, Y. Xiao, K. S. Liao, and T. S. Chung, "Highly permeable and aging resistant 3D architecture from polymers of intrinsic microporosity incorporated with beta-cyclodextrin", J. Membr. Sci., 523(October 2016), 92 (2017). https://doi.org/10.1016/j.memsci.2016.10.001
  34. C. H. Lau et al., "Hypercrosslinked additives for ageless gas-separation membranes", Angew. Chemie - Int. Ed., 55(6), 1998 (2016). https://doi.org/10.1002/anie.201508070
  35. F. Y. Li, Y. Xiao, T. S. Chung, and S. Kawi, "High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development", Macromolecules, 45(3), 1427 (2012). https://doi.org/10.1021/ma202667y
  36. Q. Song et al., "Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes", Nat. Commun., 5, 1 (2014).
  37. C. Zhang, L. Fu, Z. Tian, B. Cao, and P. Li, "Post-crosslinking of triptycene-based Troger's base polymers with enhanced natural gas separation performance", J. Membr. Sci., 556(March), 277 (2018). https://doi.org/10.1016/j.memsci.2018.04.013
  38. C. Staudt-Bickel and W. J. Koros, "Improvement of $CO_2/CH_4$ separation characteristics of polyimides by chemical crosslinking", J. Membr. Sci., 155(1), 145 (1999). https://doi.org/10.1016/S0376-7388(98)00306-8
  39. F. Y. Li, Y. Xiao, Y. K. Ong, and T. S. Chung, "UV-rearranged PIM-1 polymeric membranes for advanced hydrogen purification and production", Adv. Energy Mater., 2(12), 1456 (2012). https://doi.org/10.1002/aenm.201200296
  40. Q. Song et al., "Photo-oxidative enhancement of polymeric molecular sieve membranes", Nat. Commun., 4(May), 1918 (2013). https://doi.org/10.1038/ncomms2942
  41. P. Ray, D. Gidley, J. V. Badding, and A. D. Lueking, "UV and chemical modifications of polymer of Intrinsic Microporosity 1 to develop vibrational spectroscopic probes of surface chemistry and porosity", Microporous Mesoporous Mater., 277(February 2018), 29 (2019). https://doi.org/10.1016/j.micromeso.2018.09.013
  42. M. Carta et al., "An efficient polymer molecular sieve for membrane gas separations," Science, 339 (January), 303 (2013). https://doi.org/10.1126/science.1228032
  43. I. Rose et al., "Highly permeable benzotriptycene-based polymer of intrinsic microporosity", ACS Macro Lett., 4(9), 912 (2015). https://doi.org/10.1021/acsmacrolett.5b00439