• Title/Summary/Keyword: High-velocity Impact

Search Result 440, Processing Time 0.022 seconds

Detection of High-Velocity Impact Damage in Composite Laminates Using PVDF Sensor Signals (고분자 압전 필름 센서를 이용한 복합재 적층판의 고속 충격 손상 탐지)

  • Kim Jin-Won;Kim In-Gul
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.26-33
    • /
    • 2005
  • The mechanical properties of composite materials may severely degrade in the presence of damage. Especially, the high-velocity impact such as bird strike, a hailstorm, and a small piece of tire or stone during high taxing, can cause considerable damage to the structures and sub-system in spite of a very small mass. However, it is not easy to detect the damage in composite plates using a single technique or any conventional methods. In this paper, the PVDF(polyvinylidene fluoride) film sensors were used for monitoring high-velocity impact damage initiation and propagation in composite laminates. The WT(wavelet transform) and STFT(short time Fourier transform) are used to decompose the sensor signals. A ultrasonic C-scan and a digital microscope are also used to examine the extent of the damage in each case. This research shows how various sensing techniques, PVDF sensor in particular, can be used to characterize high-velocity impact damage in advanced composite.

The Absorbed Energy of Carbon/Epoxy Composite Laminates Subjected to High-velocity impact in Considering the Loss of Projectile Mass (고속충격을 받는 Carbon/Epoxy 복합재 적층판의 충격체 질량손실을 고려한 흡수에너지 예측)

  • Cho, Hyun-Jun;Kim, In-Gul;Lee, Seokje;Kim, Young-A;Woo, Kyeongsik
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.349-354
    • /
    • 2013
  • In this paper, we conducted high velocity impact test for Carbon/Epoxy composite laminates and proposed advanced method for predicting the absorbed energy of composite laminates. During high-velocity impact test, we discovered loss of projectile mass macroscopically using high speed camera, thus we calculated the absorbed energy of composite laminates by taking loss of projectile mass into account. We proposed a model for predicting the absorbed energy of composite laminates subjected to high-velocity impact, the absorbed energy was classified into static energy and dynamic energy. The static energy was calculated by the quasi-static perforation equation that is related to the fiber breakage and static elastic energy. The dynamic energy can be divided by the kinetic energy of deformed specimen and fragment mass. Finally, the predicted absorbed energy considering loss of projectile mass was compared with experimental results.

Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2018
  • Nonlinear low velocity impact response of sandwich beam with laminated composite face sheets and soft core is studied based on Extended High Order Sandwich Panel Theory (EHSAPT). The face sheets follow the Third order shear deformation beam theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the two dimensional elasticity is used for the core. The nonlinear Von Karman type relations for strains of face sheets and the core are adopted. Contact force between the impactor and the beam is obtained using the modified Hertz law. The field equations are derived via the Ritz based applied to the total energy of the system. The solution is obtained in the time domain by implementing the well-known Runge-Kutta method. The effects of boundary conditions, core-to-face sheet thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that each of these parameters have significant effect on the impact characteristics which should be considered. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The contact force histories predicted by EHSAPT are in good agreement with that obtained by experimental results.

Evaluation of Impact Resistance of Hybrid Fiber Reinforced Cementitious Composites Subjected to Thermal Stress (열응력을 받은 하이브리드 섬유보강 시멘트 복합체의 내충격성능 평가)

  • Han, Seung-Hyeon;Kim, Gyu-Yong;Lee, Yae-Chan;Eu, Ha-Min;Park, Jun-Young;Nam, Jung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.145-146
    • /
    • 2023
  • In this study, the effect of hybrid fiber reinforcement on the residual strength and impact resistance of high-strength cementitious composites exposed to high temperatures was investigated. A cementitious composites was manufactured in which 0.15 vol% of polypropylene fiber (PP) and 1.0 vol% of smooth steel fiber (SSF) were double-mixed, and a residual strength test was conducted while thermal stress was applied by heating test, and then a high-velocity impact test was performed. In the case of general cementitious composites, the rear surface is damaged due to explosion and low tensile strength during high temperature or impact, while hybrid fiber reinforced cementitious composites can repeatedly absorb and distribute stress until multiple fibers are damaged to suppress the propagation of impact and resistance to explosion. Therefore, this study analyzed the residual strength of cementitious composites exposed to high temperatures depending on whether hybrid fibers were mixed or not, and collected research data on fracture behavior through high-speed impact tests to evaluate impact resistance and mechanical properties.

  • PDF

A Study on the Kinetic Energy and Dispersion Behavior of High-velocity Impact-induced Debris Using SPH Technique (SPH 기법을 이용한 고속충돌 파편의 운동에너지와 분산거동 연구)

  • Sakong, Jae;Woo, Sung-Choong;Kim, Tae-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.457-467
    • /
    • 2016
  • In this study, we investigate the dispersion behavior of debris and debris cloud generated by high-velocity impacts using the smoothed particle hydrodynamics (SPH) technique. The projectile and target plate were made of aluminum, and we confirm the validity of the SPH technique by comparing the measured major and minor axis lengths of the debris cloud in the reference with the predicted values obtained through the SPH analysis. We perform high-velocity impact and fracture analysis based on the verified SPH technique within the velocity ranges of 1.5~4 km/s, and we evaluate the dispersion behavior of debris induced by the impact in terms of its kinetic energy. The maximum dispersion radius of the debris on the witness plates located behind the target plate was increased with increasing impact velocity. We derive an empirical equation that is capable of predicting the dispersion radius, and we found that 95% of the total kinetic energy of the debris was concentrated within 50% of the maximum dispersion radius.

Assessment on the Possibility of Increase of SB5-B Small Car Impact Velocity (SB5-B 소형차 충돌속도의 상향 가능성 평가)

  • Kim, Kee-Dong;Ko, Man-Gi;Joo, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3013-3022
    • /
    • 2013
  • Satisfying the large car impact condition of the high level SB5-B for "SMART Highway" longitudinal barriers, the possibility of increase of the small car impact velocity from 120km/h to 130km/h was investigated. Through computer simulation using input parameters calibrated to full-scale crash test results, various longitudinal semi-rigid barrier models were improved such that for the small car impact speed of 120km/h the change of longitudinal and transverse velocities of the impact vehicle can satisfy the THIV limit. The barrier model determined through this process satisfied the performance assessment criteria for SB5-B impact conditions. Varying the wing angle of slip block-outs of the passed barrier model, the possibility of increase of the small car impact velocity was investigated by FEA and a full-scale crash test was conducted. It has been shown that the possibility to increase the small car impact speed to 130km/h is high if the test facility condition for 130km/h impact velocity is better equipped.

High Speed Impact and Penetration Analysis using Explicit Finite Element Method (외연 유한요소 기법을 사용한 고속충돌 및 관통해석)

  • Paik, Seung-Hoon;Kim, Seung-Jo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.5-13
    • /
    • 2005
  • The impact of a long-rod penetrator into oblique plates with combined obliquity and yaw is investigated. The study was done using a newly developed three dimensional dynamic and impact analysis code, which uses the explicit finite element method. Through the comparison of simulation result with experimental result and other code's result, the adaptability and accuracy of the developed code is evaluated under the complex situation in which yaw angle and oblique angle exist simultaneously. As a result of comparison, it has found that deformed shape, residual length and velocity, rotational velocity of long-rod show good agreement with experimental data. Through this study, the applicability and accuracy of the code as a metallic armour system design tool is verified.

A Study on the ballistic impact resistance and dynamic failure behavior of aramid FRMLs by high velocity impact (고속충격에 의한 아라미드 섬유강화 금속적층재의 방탄성능 및 동적파손거동에 관한 연구)

  • 손세원;이두성;김동훈;홍성희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.527-532
    • /
    • 2000
  • The armor composite material targets such as aramid FRMLs with different type and ply number of face material and different type of back-up material, were studied to determine ballistic impact resistance and dynamic failure behavior during ballistic impact. Ballistic impact resistance is determined by $\textrm{V}_{50}$ ballistic limit, a statical velocity with 50% probability for complete penetration, test method. Also dynamic failure behaviors are respectfully observed that result from $\textrm{V}_{50}$ tests. $\textrm{V}_{50}$ tests with $0^{\circ}$ obliquity at room temperature were conducted with projectiles that were able to achieve near or complete penetration during high velocity impact tests. As a result, ballistic impact resistance of anodized Al 5052-H34 alloy(2 ply) is better than that of anodized Al 5052-H34 alloy(1 ply), but Titanium alloy showed the similar ballistic impact resistance. In the face material, ballistic impact resistance of titanium alloy is better than that of anodized Al 5052-H34 alloy. In the back-up material, ballistic impact resistance of T750 type aramid fiber is better than that of CT709 type aramid fiber.

  • PDF

A Study on the Penetration Fracture Strength of Fragile Plates subjected to High Speed Impact (고속 충격을 받는 취성재 평판의 관통파괴 강도)

  • 김지훈;심재기;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.3-9
    • /
    • 1996
  • In this study, comparison of theoretical solutions with experimental results is examined through fracture conditions for the case of float glasses subjected static loading. The range of fracture generation limits and critical penetration energies are solved according to the impactor mass under the high velocity, and analytical method of fracture strength and penetration strength are presented. Also, fracture patterns are investigated according to impact velocities. The results obtained from this study are as follows ; 1) Radial cracks are generated from the loading point regardless of plate thickness in the case of the plate subjected to the static loading. In the case of high-speed impact, dimensions of ring cracks become to smaller and length of radial cracks becomes shorter with the rapidity of impact velocity. 2) Kinetic change volume of collision after/before is constant regardless of velocities over the range of critical penetration velocity. 3) Although the same impact energy is working, the critical penetration energy is increased with the shorter of impactor mass. 4) Although the same impact energy is working, the penetration fracture of lighter Impactor mass is generated more than that of heavier impactor mass, and the impulse of lighter impacter mass appear more than that of heavier impactor mass. Therefore, the penetration fracture in the case of greater impulse is generated earlier regardless of the of the dimensions of Impact loading.

  • PDF

Design of small impact test device for concrete panels subject to high speed collision

  • Kim, Sanghee;Jeong, Seung Yong;Kang, Thomas H.K.
    • Advances in concrete construction
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • Five key items were used to create an economical and physically small impact test device for concrete panels subject to high speed collision: an air-compressive system, carbon steel pipe, solenoid valve, carrier and carrier-blocking, and velocity measurement device. The impact test device developed can launch a 20 mm steel spherical projectile at over 200 m/s with measured impact and/or residual velocity. Purpose for development was to conduct preliminary materials tests, prior to large-scale collision experiments. In this paper, the design process of the small impact test device was discussed in detail.