• Title/Summary/Keyword: High-toughness concrete

Search Result 133, Processing Time 0.021 seconds

Study on the Strength Characteristics and Flexural Toughness of Steel Fiber Reinforced Polymer Concrete (강섬유 보강 폴리머 콘크리트의 강도특성 및 휨인성에 관한 연구)

  • 김기락;연규석;이윤수
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.137-145
    • /
    • 1999
  • The use of steel fiber reinforced to improve the strength and flexural toughness of concrete is well known, but reinforcement of polymer concrete with steel fibers has been hardly reported till now. Polymer concrete has high strength, durability and freeze-thaw resistance than that of cement concrete, but it has disadvantage such as low flexural toughness. In this paper, the strength characteristics and flexural toughness of steel fiber reinforced polymer concrete are investigated experimentally with various steel fiber aspect ratios($\ell$/d), and contents(vol.%). As the result, the flexural and splitting tensile strengths and flexural toughness were increased aspect ratio, and reach the maximums at a aspect ratio of 50. The relationship between the compressive, flexural and splitting tensile strength were high. And the relationship between flexural strength and strain energy was approximately linear.

The Evaluation of Flexural Performance of Beam of Repair as High Toughness Cementitious Composites (고인성 시멘트 복합체에 의해 보수된 보 부재의 내하력 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taeg;Park, Jung-Jun;Ahn, Ki-Hong;Yoon, Pil-Yong;Kim, Jin-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.625-628
    • /
    • 2006
  • In this study, the beam which is repaired as high toughness cementitious composites evaluated on flexural performance. As for the test results, it was found that high toughness performance of beams of the repair as high toughness cementitious composites showed more better than the existing repair method and demonstrated about 95% semi-reinforcement to compare with reinforcement of carbon fiber sheets of one layer without interface and brittle failure. Therefore, appling on using PVA fiber reinforced high toughness cementitious composites, the repaired concrete structures can be increased to flexural performance.

  • PDF

Fracture toughness of high performance concrete subjected to elevated temperatures Part 1 The effects of heating temperatures and testing conditions (hot and cold)

  • Zhang, Binsheng;Cullen, Martin;Kilpatrick, Tony
    • Advances in concrete construction
    • /
    • v.2 no.2
    • /
    • pp.145-162
    • /
    • 2014
  • In this study, the fracture toughness $K_{IC}$ of high performance concrete (HPC) was determined by conducting three-point bending tests on eighty notched HPC beams of $500mm{\times}100mm{\times}100mm$ at high temperatures up to $450^{\circ}C$ (hot) and in cooled-down states (cold). When the concrete beams exposed to high temperatures for 16 hours, both thermal and hygric equilibriums were generally achieved. $K_{IC}$ for the hot concrete sustained a monotonic decrease tendency with the increasing temperature, with a sudden drop at $105^{\circ}C$. For the cold concrete, $K_{IC}$ sustained a two-stage decrease trend, dropping slowly with the heating temperature up to $150^{\circ}C$ and rapidly thereafter. The fracture energy-based fracture toughness $K_{IC}$' was found to follow similar decrease trends with the heating temperature. The weight loss, the fracture energy and the modulus of rapture were also evaluated.

Mode II Fracture Toughness of Hybrid FRCs

  • Abou El-Mal, H.S.S.;Sherbini, A.S.;Sallam, H.E.M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.4
    • /
    • pp.475-486
    • /
    • 2015
  • Mode II fracture toughness ($K_{IIc}$) of fiber reinforced concrete (FRC) has been widely investigated under various patterns of test specimen geometries. Most of these studies were focused on single type fiber reinforced concrete. There is a lack in such studies for hybrid fiber reinforced concrete. In the current study, an experimental investigation of evaluating mode II fracture toughness ($K_{IIc}$) of hybrid fiber embedded in high strength concrete matrix has been reported. Three different types of fibers; namely steel (S), glass (G), and polypropylene (PP) fibers were mixed together in four hybridization patterns (S/G), (S/PP), (G/PP), (S/G/PP) with constant cumulative volume fraction ($V_f$) of 1.5 %. The concrete matrix properties were kept the same for all hybrid FRC patterns. In an attempt to estimate a fairly accepted value of fracture toughness $K_{IIc}$, four testing geometries and loading types are employed in this investigation. Three different ratios of notch depth to specimen width (a/w) 0.3, 0.4, and 0.5 were implemented in this study. Mode II fracture toughness of concrete $K_{IIc}$ was found to decrease with the increment of a/w ratio for all concretes and test geometries. Mode II fracture toughness $K_{IIc}$ was sensitive to the hybridization patterns of fiber. The (S/PP) hybridization pattern showed higher values than all other patterns, while the (S/G/PP) showed insignificant enhancement on mode II fracture toughness ($K_{IIc}$). The four point shear test set up reflected the lowest values of mode II fracture toughness $K_{IIc}$ of concrete. The non damage defect concept proved that, double edge notch prism test setup is the most reliable test to measure pure mode II of concrete.

Strength and toughness prediction of slurry infiltrated fibrous concrete using multilinear regression

  • Shelorkar, Ajay P.;Jadhao, Pradip D.
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.123-132
    • /
    • 2022
  • This paper aims to adapt Multilinear regression (MLR) to predict the strength and toughness of SIFCON containing various pozzolanic materials. Slurry Infiltrated Fibrous Concrete (SIFCON) is one of the most common terms used in concrete manufacturing, known for its benefits such as high ductility, toughness and high ultimate strength. Assessment of compressive strength (CS.), flexural strength (F.S.), splitting tensile strength (STS), dynamic elasticity modulus (DME) and impact energy (I.E.) using the experimental approach is too costly. It is time-consuming, and a slight error can lead to a repeat of the test and, to solve this, alternative methods are used to predict the strength and toughness properties of SIFCON. In the present study, the experimentally investigated SIFCON data about various mix proportions are used to predict the strength and toughness properties using regression analysis-multilinear regression (MLR) models. The input parameters used in regression models are cement, fibre, fly ash, Metakaolin, fine aggregate, blast furnace slag, bottom ash, water-cement ratio, and the strength and toughness properties of SIFCON at 28 days is the output parameter. The models are developed and validated using data obtained from the experimental investigation. The investigations were done on 36 SIFCON mixes, and specimens were cast and tested after 28 days of curing. The MLR model yields correlation between predicted and actual values of the compressive strength (C.S.), flexural strength, splitting tensile strength, dynamic modulus of elasticity and impact energy. R-squared values for the relationship between observed and predicted compressive strength are 0.9548, flexural strength 0.9058, split tensile strength 0.9047, dynamic modulus of elasticity 0.8611 for impact energy 0.8366. This examination shows that the MLR model can predict the strength and toughness properties of SIFCON.

Mixed Mode Crack Propagation using the High Strength Concrete Disk (고강도 콘크리트 디스크를 이용한 혼합모드 균열전파)

  • 진치섭;김희성;박현재;김민철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.733-738
    • /
    • 2000
  • It is difficult to obtain accurate fracture toughness values by RILEM committees proposed three point bend test(TPB) because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, for disk test, fracture toughness is easily obtained from crack initial load. We examined the cracked high strength concrete disk and the experimental results were compared with the results by finite element analysis(FEA). Also we compared experimental fracture locus with theoretical fracture locus.

  • PDF

Statistical flexural toughness modeling of ultra high performance concrete using response surface method

  • Mosabepranah, Mohammad A.;Eren, Ozgur
    • Computers and Concrete
    • /
    • v.17 no.4
    • /
    • pp.477-488
    • /
    • 2016
  • This paper aims to model the effects of five different variables which includes: cement content (C), the steel fiber amount (F), the silica fume amount (SF), the superplasticizer (SP), the silica fume amount (SF), and the water to cementitious ratio (w/c) on 28 days flexural toughness of Ultra High Performance Concrete (UHPC) as well as, a study on the variable interactions and correlations by using analyze of variance (ANOVA) and response surface methodology (RSM). The variables were compared by fine aggregate mass. The model will be valid for the mixes with 0.18 to 0.32 w/c ratio, 4 to 8 percent steel fiber, 7 to 13 percent cement, 15 to 30 percent silica fume, and 4 to 8 percent superplasticizer by fine aggregate mass.

Performance and Evaluation of Flexural Toughness Indices for HPFRCCs (고인성 섬유보강 시멘트 복합체의 휨인성 성능 및 평가)

  • Han Byung Chan;Yang Il-Seung;Park Wan Shin;Jeon Esther;Kim Sun Woo;Yun Hyun Do
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.615-618
    • /
    • 2004
  • The primary role of fibers in High performance fiber reinforced cement composites(HPFRCCs) is to improve the toughness, or energy absorption capacity, of the composite material, However, there is still no general agreement as to how this toughness should be characterized, or how it might be used in the design of structures containing HPFRCCs. In this paper, therefore, we focus on test techniques for measuring flexural toughness. For mechanical properties, HPFRCCs can be tested in the same way as fiber reinforced concrete(FRC). Both the significance and the limitations of somewhat different national and industrial standards of FRC are discussed. For flexural toughness, with depend on the presence of fibers, new test methods was developed and verified. We also suggest evaluation method of tensile toughness indices using the moment curvature relationship in flexural tests.

  • PDF

Stress-strain behavior and toughness of high-performance steel fiber reinforced concrete in compression

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.11 no.2
    • /
    • pp.149-167
    • /
    • 2013
  • The complete stress-strain behavior of steel fiber reinforced concrete in compression is needed for the analysis and design of structures. An experimental investigation was carried out to generate the complete stress-strain curve of high-performance steel fiber reinforced concrete (HPSFRC) with a strength range of 52-80 MPa. The variation in concrete strength was achieved by varying the water-to-cementitious materials ratio of 0.40-0.25 and steel fiber content (Vf = 0.5, 1.0 and 1.5% with l/d = 80 and 55) in terms of fiber reinforcing parameter, at 10% silica fume replacement. The effects of these parameters on the shape of stress-strain curves are presented. Based on the test data, a simple model is proposed to generate the complete stress-strain relationship for HPSFRC. The proposed model has been found to give good correlation with the stress-strain curves generated experimentally. Inclusion of fibers into HPC improved the ductility considerably. Equations to quantify the effect of fibers on compressive strength, strain at peak stress and toughness of concrete in terms of fiber reinforcing index are also proposed, which predicted the test data quite accurately. Compressive strength prediction model was validated with the strength data of earlier researchers with an absolute variation of 2.1%.

Fracture Properties of High Strength Concrete Disk with Center-Crack (중앙에 노치가 있는 고강도 콘크리트 디스크의 파괴특성)

  • 진치섭;김희성;박현재;김민철
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.161-167
    • /
    • 2001
  • It is difficult to obtain accurate fracture toughness values using three point bending test(TPB) proposed by RILEM committees because the shape of load-deflection curve is irregular and final crack propagation occurs after some slow stable cracking. However, fracture toughness is easily obtained from crack initiation load in the disk test. In this paper, the fracture properties of high strength concrete disks with center-crack was investigated. For this purpose, the experimental results were compared with the results by finite element analysis(FEA). And the experimental fracture locus was compared with theoretical fracture locus. Also, the results of fracture properties for the degree of concrete strength are presented. It is concluded from this study that results from FEA with maximum stress theory were compared well with the results from experiment. And the degree of concrete strength was contributed to the crack initiation load and fracture toughness, but was not contributed to the failure angle. Also, The discrepancy of fracture locus between the maximum stress theory and the experiment for concrete is considered to depend upon a large energy requirement for inducing the mixed-mode and sliding mode fractures.