• 제목/요약/키워드: High-temperature sodium heat pipe

검색결과 18건 처리시간 0.026초

Manufacturing and Temperature Measurements of a Sodium Heat Pipe

  • 이병인;이성홍
    • Journal of Mechanical Science and Technology
    • /
    • 제15권11호
    • /
    • pp.1533-1540
    • /
    • 2001
  • A high-temperature sodium stainless steel heat pipe was fabricated and its performance has been investigated. The working fluid was sodium and it was sealed inside a straight tube container made of stainless steel. The amount of sodium occupied approximately 20% of the total volume of the heat pipe and its weight was 65.7gram. The length of a stainless steel container is 1002mm and its outside diameter is 25.4mm. Performance tests were carried out in a room air condition under a free convective environment and the measured temperatures are presented. The start-up behavior of the heat pipe from a frozen state was investigated for various heat input values between 600W and 1205W. In steady state, axial temperature distributions of a heat pipe were measured and its heat transfer rates were estimated in the range of vapor temperature from 50$0^{\circ}C$ to 63$0^{\circ}C$. It is found that there are small temperature differences in the vapor core along the axial direction of a sodium heat pipe for the high operating temperatures. But for the range of low operating temperatures there are large temperature drops along the vapor core region of a sodium heat pipe, because a small vapor pressure drop makes a large temperature drop. The transition temperature was reached more rapidly in the cases of high heat input rate for the sodium heat pipe.

  • PDF

고온 유리 성형 공정을 위한 직육면체형 Sodium 히트파이프의 실험 연구 (An Experimental Study on a Rectangular Parallelepiped Sodium Heat Pipe for High Temperature Class Forming)

  • 박수용;부준홍;김준범
    • 대한기계학회논문집B
    • /
    • 제26권11호
    • /
    • pp.1622-1629
    • /
    • 2002
  • To enhance isothermal characteristics of glass-farming surface, a rectangular parallelepiped heat pipes was fabricated, tested, and analyzed. The working fluid was sodium and the wall material was stainless steel 304. The dimension of the heat pipe was 210 (L) $\times$ 140(W) $\times$ 92(H)mm. A lattice structure covered with screen mesh was inserted to promote return of working fluid. The bottom side of heat pipe was heated electrically and the top side was cooled by liquid circulation. The temperature distribution at the bottom surface was of major concern and was monitored to determine isothermal characteristics. A frozen start-up of rectangular parallelepiped liquid metal heat pipe was tested. The operating mode of the sodium heat pipe was affected by the temperature of cooling zone, input heat flux, and the operating temperature of heat pipe. The heat pipe operated in a normal fashion as long as the heat flux was over 5.78W/cm$^2$, and the inside wall temperature of condenser part was above 95$^{\circ}C$ The maximum temperature difference at the bottom surface was observed to be 32$^{\circ}C$ when the operating temperature of the heat pipe was operating normally around 50$0^{\circ}C$. The result showed that a sodium heat pipe was very effective in reducing significantly the temperature difference in the glass-forming surface.

Isothermal Characteristics of a Rectangular Parallelepiped Sodium Heat Pipe

  • Boo Joon Hong;Park Soo Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제19권4호
    • /
    • pp.1044-1051
    • /
    • 2005
  • The isothermal characteristics of a rectangular parallelepiped sodium heat pipe were inves­tigated for high-temperature applications. The heat pipes was made of stainless steel of which the dimension was $140\;m\;(L)\;{\times}\;95m\;(W)\;{\times}\;46 m\;(H)$ and the thickness of the container was 5 mm. Both inner surfaces of evaporator and condenser were covered with screen meshes to help spread the liquid state working fluid. To provide additional path for the working fluid, a lattice structure covered with screen mesh wick was inserted in the heat pipe. The bottom surface of the heat pipe was heated by an electric heater and the top surface was cooled by circulating coolant. The concern in this study was to enhance the temperature uniformity at the bottom surface of the heat pipe while an uneven heat source up to 900 W was in contact. The temperature distribution over the bottom surface was monitored at more than twenty six locations. It was found that the operating performance of the sodium heat pipe was critically affected by the inner wall temperature of the condenser region where the working fluid may be changed to a solid phase unless the temperature was higher than its melting point. The maximum temperature difference across the bottom surface was observed to be $114^{\circ}C$ for 850 W thermal load and $100^{\circ}C$ coolant inlet temperature. The effects of fill charge ratio, coolant inlet temperature and operating temperature on thermal performance of heat pipe were analyzed and discussed.

태양열 반응로용 나트륨 히트파이프의 열이송 특성에 관한 실험적 연구 (An Experimental Study on the Heat Transport Characteristics of a Sodium Heat Pipe for a Solar Furnace)

  • 부준홍;박철민;김진수;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.178-181
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature application was manufactured and tested for transient and steady-state operations. The container material was made of stainless-steel 316, and the working fluid was sodium. Stainless-steel 316 mesh screen was inserted as a capillary structure. The working fluid fill charge ratio was approximately 64 $\sim$ 181% based on the pore space of the wick. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. The evaporator part was 150 mm and the condenser 80 mm. The performance test of the heat pipe has been conducted in the furnace with up to 800 W. The variation of the average heat transfer coefficient was investigated as a function of heat flux and vapor temperature. As input thermal load increased, it was showed that difference of temperatures in evaporator and condenser decreased and that operating section and heat transfer characteristics at the heat pipe increased.

  • PDF

고온 나트륨 히트파이프에서 열이송 조건에 따른 열전달 특성에 대한 실험 연구 (An Experimental Study on the Heat Transfer Characteristics of a High-temperature Sodium Heat Pipe Depending on the Thermal Transport Conditions)

  • 박철민;부준홍;김진수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2340-2345
    • /
    • 2008
  • Cylindrical stainless-steel/sodium heat pipe for a high-temperature application was manufactured and tested for transient and steady-state operations. Two layers of Stainless-steel screen mesh wick was inserted as a capillary structure. The outer diameter of the heat pipe was 12.7 mm and the total length was 250 mm. As thermal transport conditions, the effective transport length, the heat flux, the tilt angle and the operating temperature were varied. The heat was supplied by an electric furnace up to 1 kW and the cooling was performed by forced convection of air. The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and vapor temperature. Typical range of the total thermal resistance was as low as $0.036^{\circ}C/W$ at $175.8\;kW/m^2$ of heat flux and $700^{\circ}C$ of operating temperature.

  • PDF

Three-dimensional CFD simulation of geyser boiling in high-temperature sodium heat pipe

  • Dahai Wang;Yugao Ma;Fangjun Hong
    • Nuclear Engineering and Technology
    • /
    • 제56권6호
    • /
    • pp.2029-2038
    • /
    • 2024
  • A deep understanding of the characteristics and mechanism of geyser boiling and capillary pumping is necessary to optimize a high-temperature sodium heat pipe. In this work, the Volume of Fluid (VOF) two-phase model and the capillary force model in the mesh wick were used to model the complex phase change and fluid flow in the heat pipe. Computational Fluid Dynamics (CFD) simulations successfully predicted the process of bubble nucleation, growth, aggregation, and detachment from the wall in the liquid pool of the evaporation section of the heat pipe in horizontal and tilted states, as well as the reflux phenomenon of capillary suction within the wick. The accuracy and stability of the capillary force model within the wick were verified. In addition, the causes of geyser boiling in heat pipes were analyzed by extracting the oscillation distribution of heat pipe wall temperature. The results show that adding the capillary force model within the wick structure can reasonably simulate the liquid backflow phenomenon at the condensation; Under the horizontal and inclined operating conditions of the heat pipe, the phenomenon of local dry-out will occur, resulting in a sharp increase in local temperature. The speed of bubble detachment and the timely reflux of liquid sodium (condensate) replenishment in the wick play a vital role in the geyser temperature oscillation of the tube wall. The numerical simulation method and the results of this study are anticipated to provide a good reference for the investigation of geyser boiling in high-temperature heat pipes.

스테인리스 스틸-나트륨 히트파이프의 장기 수명 시험 (Long-Term Life Test of A Stainless Steel-Sodium Heat Pipe)

  • 박수용;정의국;부준홍;강환국;유정현;박상훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1058-1062
    • /
    • 2004
  • High-temperature cylindrical stainless steel/sodium heat pipe was manufactured and tested under long-term operation. The container material was stainless steel 316L and the working fluid was sodium. The heat pipe was 25.4 mm in diameter and 1000 mm in length with a two-layer screen mesh wick. The evaporator part was 600 mm and the condenser part was 300 mm in length. Total measurement points on heat pipe were 15 points and 12 points were located in condenser part. The heat pipe was heated for 142 days(3400 hours) at $800^{\circ}C$. In the test period, the maximum temperature difference was increased from $18^{\circ}C$ o $28^{\circ}C$ and the maximum thermal resistance was as low as $0.015^{\circ}CW$.

  • PDF

고온 태양열기기용 액체금속 히트파이프의 작동조건에 따른 성능 특성 (Performance Characteristics of a Liquid-Metal Heat Pipe for igh-temperature Solar Thermal Devices Depending on the Operating Conditions)

  • 박철민;이정륜;부준홍;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2009
  • Sodium heat pipe for high-temperature solar thermal application was manufactured and tested for transient and steady-state operations. Total length of the heat pipe was 650 mm and the outer diameter was 12.7 mm. Thermal performance was compared experimentally for two different cooling methods of the forced and the natural convection cooling in the heat pipe condenser. During the experiment, the maximum temperature was about 1300K, and different cooling methods were applied to the condenser region to charge the operating temperature. The effective thermal conductivity and the thermal resistance were investigated as a function of heat flux, heat transport length, and operating temperature.

  • PDF

기상응축 열교환을 이용한 고정밀 등온 가열로 개발 (Development of Heat-treatment Furnace with Maximum Uniform Zone using Gas-phase Condensing Heat Exchange)

  • 홍현선;공만식;강환국
    • 열처리공학회지
    • /
    • 제22권3호
    • /
    • pp.162-168
    • /
    • 2009
  • A horizontal tube furnace with a wide uniform-temperature zone was developed using isothermal characteristics of a heat pipe. The heat pipe heating system consists of a concentric annular shaped stainless-steel container, sodium as a working fluid and a screen mesh wick structure. The performance test of the heat pipe revealed that temperature changes along seven consecutive positions of the heat pipe outer wall were less than${\pm}0.1^{\circ}C$, thereby ensuring the high isothermal property. The isothermal property of the heat pipe-adapted tube fumace was investigated and compared to a conventional non-heat pipe type tube furnace. The temperature distribution measurement showed that the uniform temperature zone, in which temperature change is less than${\pm}$1$^{\circ}$C, of the heat pipe employed tube furnace system was about three times longer compared to the conventional tube furnace system.

고온 원관형 히트파이프의 열전달 특성에 관한 실험 연구 (An Experimental Study on the Heat Transfer Characteristics of High-Temperature Cylindrical Heat Pipes)

  • 박수용;부준홍
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.70-76
    • /
    • 2004
  • High-temperature cylindrical sodium/stainless-steel heat pipes were manufactured and tested for transient as well as steady states. Total length of the heat pipe was 1 m and the diameter was 25.4 mm. Screen meshes of 3 different sizes were used to estimate the effect of mesh size on the thermal performance of the heat pipe. The minimum thermal resistance achieved was as low as 0.02$^{\circ}C$/W for the maximum thormal load of 2 ㎾. The average heat transfer coefficient in the evaporator was about 2,000 ㎾/$m^2$K and those in the condenser region were up to 5 times higher.