• 제목/요약/키워드: High-temperature oxidation

검색결과 1,138건 처리시간 0.025초

석탄 바닥재와 점토를 이용한 인공경량골재 제조 (Manufacturing artificial lightweight aggregates using coal bottom ash and clay)

  • 김강덕;강승구
    • 한국결정성장학회지
    • /
    • 제17권6호
    • /
    • pp.277-282
    • /
    • 2007
  • 화력발전소에서 발생하는 석탄 바닥재(bottom ash)와 점토를 혼합하여 성형 후, 소성하여 인공경량골재를 제조하고, 소성온도와 조성 변화에 따른 물성을 분석하였다. 바닥재는 입경이 4.75mm 이상인 입자가 13wt% 정도로 거친 분말로 압출성형을 위하여 미분쇄 공정이 필요하였다. 또한 바닥재는 미연탄소(C)를 다량 함유하고 있어 소결 시 C의 산화반응과 이에 따른 가스발생으로 소결체의 경량화를 유도하였다. 점토에 바닥재 첨가량이 증가할수록 소성 지수가 감소하였고 이에 따라 성형체의 성형성이 저하되었으나 바닥재 첨가량이 40wt% 까지의 성형체는 소성 지수 및 소성 한계값이 각각 약 10과 22로서 압출성형이 가능하였다. 바닥재가 $30{\sim}50wt%$ 첨가되고 $1150{\sim}1200^{\circ}C$ 범위에서 소결된 골재는 부피비중 $1.3{\sim}1.5$, 흡수율 $14{\sim}16%$를 나타냈고 따라서 고층빌딩이나 교량 등의 골재대체재로써의 가능성이 확인되었다.

Development of Analysis Condition and Detection of Volatile Compounds from Cooked Hanwoo Beef by SPME-GC/MS Analysis

  • Ba, Hoa Van;Oliveros, Maria Cynthia;Ryu, Kyeong-Seon;Hwang, In-Ho
    • 한국축산식품학회지
    • /
    • 제30권1호
    • /
    • pp.73-86
    • /
    • 2010
  • The current study was designed to optimize solid phase microextraction (SPME)-GC-MS conditions for extraction and analysis of volatile components for Hanwoo beef and to establish a tentative database of flavor components. Samples were taken from Hanwoo longissimus muscle (30 mon old steer, $1^+B$ carcass grade) at 24 h postmortem. Results indicated that the optimum adsorption time for $75{\mu}m$ CAR/PDMS fiber was 60 min at $60^{\circ}C$. Thermal cleaning at $250^{\circ}C$ for 60 min was the best practice for decontamination of the fiber. A short analysis program with a sharp oven temperature ramp resulted in a better resolution and higher number of measurable volatile components. With these conditions, 96 volatile compounds were identified with little variation including 22 aldehydes, 8 ketones, 31 hydrocarbons, 12 alcohols, 8 nitrogen- and sulfurcontaining compounds, 5 pyrazines and 10 furans. A noticeable observation was the high number of hydrocarbons, aldehydes, ketones, alcohols and 2-alkylfurans which were generated from lipid decomposition especially the oxidation and degradation of unsaturated and saturate fatty acids. This implies that these compounds can be candidates for flavor specification of highly marbled beef such as Hanwoo flavor.

초초임계 석탄발전 보일러 튜브(SA213 TP347H) 용접부 안정화 열처리 효과 (Effect on the Stabilizing Heat Treatment to Weld Joint for the USC Coal Boiler Tubes(SA213 TP347H))

  • 안종석;박진근;이길재;윤재연
    • Journal of Welding and Joining
    • /
    • 제33권4호
    • /
    • pp.30-36
    • /
    • 2015
  • Austenite stainless steel(SA213-TP347H) has widely been used for the superheater & reheater tube in USC(ultra-supercritica) coal boiler because of its high creep rupture strength and anti-oxidation. But recently, the short-term failures have happened frequently in heat affected zone for only 4,000~15,000hours of service. Many investigations have been conducted to understand the failure mechanism. The root cause of failure was comfirmed to "strain induce participation hardening crack" or "reheat cracking". This mechanism often occurred due to weld residual stress and precipitation of the Cr, Nb carbides in the stabilized stainless steel such as TP347H. This paper presents an analysis of failure tube and effect of the sample tubes that conducting stabilizing heat treatment in site after 11,380hours & 16,961hours of service. Visual inspection was performed. In addition, microscopic characteristics was identified by O.M, SEM, and hardness test was carried out to find out the heat treatment effects. Failures seem to happen because of being not conducted stabilizing heat treatment in site. And another cause is inadequate weld parameter such as pass, ampere, voltage, inter-pass temperature. Thus, this paper has the purpose to describe that how to prevent similar failures in those weld-joints.

Purification of Mitochondrial Matrix Aldehyde Dehydrogenase from Pig Brain

  • Kim, Kyu-Tae;Lee, Young-Don
    • BMB Reports
    • /
    • 제28권2호
    • /
    • pp.177-183
    • /
    • 1995
  • The activity of aldehyde dehydrogenase (ALDH) in the cerebrum, cerebellum, striatum, and medulla oblongata was examined and mitochondrial matrix ALDH was purified prior to immunohistochemical study on the localization of ALDH isozymes in pig brain. Relatively high enzyme activity was found in the striatum and medulla oblongata when using indole-3-acetaldehyde as substrate, and in the striatum when using 3,4-dihydroxyphenylacetaldehyde (DOPAL). The main part of mitochondrial ALDH activities with both acetaldehyde and DOPAL existed in the matrix fraction. The ratio of activity of the matrix to the membrane fraction in the cerebrum was higher than in the cerebellum, suggesting that the distribution pattern of ALDH isozymes was different according to the brain regions. The 276-fold purified mitochondrial matrix ALDH from pig brain was identified to be homologous tetramers with 53 KD subunits. The enzyme showed maximal activity at pH 9.0 and was stable in the temperature range from $25^{\circ}C$ to $37^{\circ}C$. The mitochondrial matrix ALDH activity was considerably inhibited by acetaldehyde in vitro. The $K_m$ values of the enzyme for acetaldehyde and propionaldehyde were 5.8 mM and 4.9 mM, respectively, whereas $K_m$ values for indole-3-acetaldehyde and DOPAL were 44 ${\mu}M$ and 1.6 ${\mu}M$, respectively. The $V_{max}/K_{m}$ ratio was the highest with DOPAL as compared with other substrates. These results suggested that mitochondrial matrix ALDH in the present work might be a low Km isozyme involved in biogenic aldehyde oxidation in pig brain.

  • PDF

Fermentation: The Key Step in the Processing of Black Tea

  • Jolvis Pou, K.R.
    • Journal of Biosystems Engineering
    • /
    • 제41권2호
    • /
    • pp.85-92
    • /
    • 2016
  • Background: The same plant, Camellia sinensis, is used to produce all types of tea, and the differences among the various types arise from the different processing steps that are used. Based on the degree of fermentation, tea can be classified as black, green, white, or oolong tea. Of these, black tea is the most or fully fermented tea. The oxidized polyphenolic compounds such as theaflavins (TF) and thearubigins (TR) formed during fermentation are responsible for the color, taste, flavor, and aroma of black tea. Results: Research indicates that an optimum ratio of TF and TR (1:10) is required to ensure a quality cup of tea. The concentrations of TF and TR as well as desirable quality characteristics increase as fermentation time increases, reaching optimum levels and then degrading if the fermentation time is prolonged. It is also necessary to control the environment for oxidation. There are no established environment conditions that must be maintained during the fermentation of the ruptured tea leaves. However, in most cases, the process is performed at a temperature of $24-29^{\circ}C$ for 2-4 h or 55-110 min for orthodox tea or crush, tear, and curl (CTC) black tea, respectively, under a high relative humidity of 95-98% with an adequate amount of oxygen. Conclusion: The polyphenolic compounds in black tea such as TF and TR as well as un-oxidized catechins are responsible for the health benefits of tea consumption. Tea is rich in natural antioxidant activities and is reported to have great potential for the management of various types of cancers, oral health problems, heart disease and stroke, and diabetes and to have other health benefits such as the ability to detoxify, improve urine and blood flow, stimulate, and improve the immune system.

개질기용 예혼합 버너의 화염형태 및 안정성 특성 (Surface Flame Patterns and Stability Characteristics of Premixed Burner System for Fuel Reformers)

  • 이필형;박봉일;조순혜;황상순
    • 한국연소학회지
    • /
    • 제15권3호
    • /
    • pp.8-14
    • /
    • 2010
  • Fuel processing systems which convert fuel into rich gas (such as stream reforming, partial oxidation, autothermal reforming) need high temperature environment ($600{\sim}1,000^{\circ}$). Generally, anode-off gas or mixture of anode-off gas and LNG is used as input gas of fuel reformer. In order to make efficient and low emission burner system for fuel reformer, it is necessary to elucidate the combustion and emission characteristic of fuel reformer burner. The purpose of this study is to develop a porous premixed flat ceramic burner that can be used for 1~5 kW fuel cell reformer. Ceramic burner experiments using natural gas, hydrogen gas, anode off gas, mixture of natural gas & anode off gas were carried out respectively to investigate the flame characteristics by heating capacity and equivalence ratio. Results show that the stable flat flames can be established for natural gas, hydrogen gas, anode off gas and mixture of natural gas & anode off gas as reformer fuel in the porous ceramic burner. For all of fuels, their burning velocities become smaller as the equivalence ratio goes to the lean mixture ratio, and a lift-off occurs at lean limit. Flame length in hydrogen and anode off gas became longer with increasing the heat capacity. In particular, the blue surface flame is found to be very stable at a very lean equivalence ratio at heat capacity and different fuels. The exhausted NOx and CO measurement shows that the blue surface flame represents the lowest NOx and CO emissions since it remains very stable at a lean equivalence ratio.

매체순환식 가스연소기 적용을 위한 5가지 산소공여입자들의 반응특성 (Reaction Characteristics of Five Kinds of Oxygen Carrier Particles for Chemical-Looping Combustor)

  • 류호정;진경태;임남윤;배성렬
    • 한국수소및신에너지학회논문집
    • /
    • 제14권1호
    • /
    • pp.24-34
    • /
    • 2003
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion may yield great advantages for the savings of energy to $CO_2$ separation and suppressing the effect on environment, In chemical-looping combustor, fuel is oxidized by metal oxide medium in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. In this study, five oxygen carrier particles such as NiO/bentonite, NiO/YSZ, $(NiO+Fe_2O_3)VYSZ$, $NiO/NiAl_2O_4$, and $Co_{\chi}O_y/CoAl_2O_4$ were examined &om the viewpoints of reaction kinetics, oxygen transfer capacity, and carbon deposition characteristics. Among five oxygen particles, NiO/YSZ particle is superior in reaction rate, oxygen carrier capacity, and carbon deposition to other particles. However, at high temperature ($>900^{\circ}C$), NiO/bentonite particle also shows enough reactivity and oxygen carrier capacity to be applied in a practical system.

지지체의 변화에 따른 Ni-페라이트의 2단계 열화학 사이클 반응 특성에 관한 연구 (Two-Step Thermochemical Cycle with Supported $NiFe_2O_4$ for Hydrogen Production)

  • 김우진;강경수;김창희;조원철;강용;박주식
    • 한국수소및신에너지학회논문집
    • /
    • 제19권6호
    • /
    • pp.505-513
    • /
    • 2008
  • The two-step thermochemical cycle was examined on the $CeO_2$, YSZ, and $ZrO_2$-supported $NiFe_2O_4$ to investigate the effects of support material addition. The supported $NiFe_2O_4$ was prepared by the aerial oxidation method. Thermal reduction was conducted at 1573K and 1523K while water-splitting was carried out at 1073K. Supporting $NiFe_2O_4$ on $CeO_2$, YSZ and $ZrO_2$ alleviated the high-temperature sintering of iron-oxide. As a result, the supported $NiFe_2O_4$ exhibited greater reactivity and repeatability in the water-splitting cycle as compared to the unsupported $NiFe_2O_4$. Especially, $ZrO_2$-supported $NiFe_2O_4$ showed better sintering inhibition effect than other supporting materials, but hydrogen production amount was decreased as cycle repeated. In case of $CeO_2$-supported $NiFe_2O_4$, improvement of hydrogen production was found when the thermal reduction was conducted at 1573K. It was deduced that redox reaction of $CeO_2$ activated above 1573K.

RTP 와 PECVD을 이용한 저가의 표면 passivation 막들의 특성연구 (Cost-effective surface passication layers by RTP and PECVD)

  • 이지연;이수홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 디스플레이 광소자분야
    • /
    • pp.142-145
    • /
    • 2004
  • In this work, we have investigated the application of rapid thermal processing (RTP) and plasma enhanced chemical vapour deposition (PECVD) for surface passivation. Rapid thermal oxidation (RTO) has sufficiently low surface recombination velocities (SRV) $S_{eff}$ in spite of a thin oxides and short process time. The effective lifetime is increasing with an increase of the oxide thickness. In the same oxide thickness, The effective lifetime is independent on the process temperature and time. $S_{eff,max}$ is exponentially decreased with increasing oxide thickness. $S_{eff,max}$ can be reduced to 200 cm/s with only 10 nm oxide thickness. On the other hand, three different types of SiN are reviewed. SiN1 layer has a thickness of about 72 nm and a refractive index of 2.8. Also, The SiN1 has a high passivation quality. The effective lifetime and SRV of 1 $\Omega$ cm Float zone (FZ) silicon deposited with SiN1 is about 800 s and under 10 cm/s, respectively. The SiN2 is optimized for the use as an antireflection layer since a refractive index of 2.3. The SiN3 is almost amorphous silicon caused by less contents of N2 from total process. The effective lifetime on the FZ 1 ${\Omega}cm$ is over 1000 ${\mu}s$.

  • PDF

다목적용 치과용 금합금의 소성 시 냉각속도와 계류시간에 따른 경도와 미세구조의 변화 (Hardness and microstructural changes by cooling rate and holding time during porcelain firing of a multi-purpose dental gold alloy)

  • 조미향
    • 대한치과기공학회지
    • /
    • 제33권4호
    • /
    • pp.271-281
    • /
    • 2011
  • Purpose: The aim of this study is to investigate the changes in hardness and microstructure of a dental multipurpose alloy after simulated complete firing with controlled cooling rate and holding time by characterizing the changes in hardness and microstructure after simulated firing with various cooling rates and holding times. Methods: Before hardness testing, the specimens were solution treated and then were rapidly quenched into ice brine. The specimens were completely fired in furnace. Hardness measurements were made using a Vickers microhardness tester. The specimens were examined at 15 kV using a field emission scanning electron microscope. Results: The maximum hardness value was obtained at stage 0 after simulated firing with various cooling rates (quick cooling, stage 0, stage 1, stage 2, stage 3). By the repetitive firing, the hardness of the tested alloy decreased gradually. By holding the specimen at $500^{\circ}C$ for 10-20min after simulated firing, the hardness increased apparently. However, to hold the alloy for long periods of time in the relatively high temperature after simulated firing resulted in the formation of thick oxidation layer. The oxide film formed on the surface of the alloy after simulated complete firing with controlled cooling rate, which was mainly composed of O and Zn. Conclusion: It is reasonable to hold the alloy at $500^{\circ}C$ for 10-20min after complete firing in other to improve the final hardness of the alloy.