• Title/Summary/Keyword: High-temperature drying

Search Result 468, Processing Time 0.032 seconds

Influence of Drying Temperature and Duration on the Quantification of Particulate Organic Matter

  • Lee, Jin-Ho;Doolittle, James J.;Lee, Do-Kyoung;Malo, Douglas D.
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.4
    • /
    • pp.289-296
    • /
    • 2006
  • Various drying conditions, temperatures (40 to $80^{\circ}C$) and durations (overnight to 72 hrs), for the particulate organic matter (POM) fraction after wet-sieving size fractionation have been applied for determination of POM contents in the weight loss-on-ignition method. In this study, we investigated the optimum drying condition for POM fraction in quantification of POM and/or mineral-associated organic matter (MOM; usually indirectly estimated). The influence of the drying conditions on quantifying POM was dependent upon soil properties, especially the amount of soil organic components. In relatively high organic soils (total carbon > 40 g/kg in this study), the POM values were significantly higher (overestimated) with drying at $55^{\circ}C$ than those values at $105^{\circ}C$, which were, for example, 173.2 and 137.3 mg/kg, respectively, in a soil studied. However, drying at $55^{\circ}C$ for longer than 48 hrs of periods produced consistent POM values even though the values were much higher than those at $105^{\circ}C$. Thus, indirect estimates of MOM (MOM = SOM-POM) also tended to be significantly impacted by the dry conditions. Therefore, we suggest POM fractions should be dried at $105^{\circ}C$ for 24 hrs as determining POM and MOM contents. If the POM traction is needed to be dried at a lower temperature (e.g. $55^{\circ}C$) with a specific reason, at least 48 hrs of drying period is necessary to obtain consistent POM values, and a moisture correction factor should be determined to adjust the values back to a $105^{\circ}C$ weight basis.

Effect of hot-air drying temperature on antioxidative activity of sweetpotato leaves (열풍건조 온도에 따른 고구마 잎 메탄올 추출물의 항산화 효과)

  • Jeong, Da-Woon;Park, Yang-Kyun;Nam, Sang-Sik;Han, Seon-Kyeong
    • Food Science and Preservation
    • /
    • v.22 no.5
    • /
    • pp.708-713
    • /
    • 2015
  • To provide the basic data to dry vegetate the sweetpotato leaves, the total contents of tannin, flavonoid and polyphenol in the methanol extract from the hot-air dried sweetpotato leaves were analyzed and DPPH radical scavenging activity, ABTS radical scavenging ability, nitrite scavenging ability, and others were comparatively analyzed. The total tannin content was decreased from Shinmi of 10.87 mg/g at $40^{\circ}C$ to 7.28 mg/g at $70^{\circ}C$ and the total flavonoid was decreased from Hayanmi of 55.37 mg/g at $40^{\circ}C$ to 39.63 mg/g at $70^{\circ}C$. That is, the low temperature drying contained more of these substances than in the high temperature drying. The DPPH radical scavenging activity was the highest in Shinmi and Hayanmi of 84.33% and 85.25% at $40^{\circ}C$, and the ABTS radical scavenging ability was a high value of over 80% in the treatment plot at $40^{\circ}C$. The nitrite scavenging ability was highest in Shinmi and Hayanmi of 76.15% and 73.74% at $40^{\circ}C$ but low at $70^{\circ}C$. That is, the antioxidant effect of the hot-air dried sweetpotato leaves was high in the sample of $40^{\circ}C$ and low in the sample of $70^{\circ}C$. Affected by the drying temperature, the high antioxidant effect is resulting from the little decrease of active ingredient when drying at low temperatures.

Quality Attributes of Carrot Pieces for Baby Foods Prepared under Different Freeze Drying Conditions (냉동 건조 조건에 따른 이유식용 당근의 품질 특성)

  • Kim, Hye-Kyoung;Suh, Dong-Soon;Lee, Young-Chun;Kim, Kwang-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.799-804
    • /
    • 2002
  • Optimum conditions of freeze-dried carrots were determined using response surface methodology. Physicochemical and sensory properties of freeze-dried carrot prepared at different plate temperatures and chamber pressures were evaluated. Drying time increased with decreasing plate temperature and chamber pressure. Rehydration ratio decreased inversely with chamber pressure at low plate temperature, but increased proportionally with chamber pressure at high temperature. Density, color, and sensory off-flavor were not affected by the plate temperature and chamber pressure. Sensory color, tenderness, and carrot flavor increased with decreasing plate temperature, but were not affected by chamber pressure. Based on the drying time, rehydration ratio, and sensory attributes, optimum plate temperature and chamber pressure for the preparation of freeze-dried carrot were determined as $43^{\circ}C$ and 700 micronHg, respectively.

Effect of Drying Methods on Longitudinal Liquid Permeability of Korean Pine

  • Lee, Min-Gyoung;Lu, Jianxiong;Jiang, Jiali;Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.49-55
    • /
    • 2008
  • This study was carried to investigate the effects of steaming and four different drying methods on the longitudinal liquid permeability of Korean pine (Pinus koraiensis Sieb.et Zucc.) board. Four drying methods were air drying, conventional kiln drying, microwave-vacuum drying and high temperature drying. Darcy equation was used for calculating the specific permeability of the small sapwood specimens taken from the treated boards while capillary rising method was used for the heartwood specimens. The sapwood specimens were extracted with water and benzene-alcohol solution to examine the mechanism of liquid flow in treated wood. No significant correlation was found between specific permeability and the number of resin canals of the sapwood specimens. Extraction decreased the differences of specific permeabilities of the sapwood specimens between the five treatment methods. The effects of extraction on the longitudinal permeability are different between five treatments. The fluid path in heartwood was observed by dynamic observation method.

A Study on the Properties of Dicalcium Phosphate Dihydrate According to the Manufacturing Condition (제이인산(第二燐酸)칼슘의 제조조건(製造條件)에 따른 성상(性狀) 연구(硏究))

  • Lah, Woon-Lyong;An, Kyung-Ran;Han, Kwan-Sup;Lee, Gye-Joo
    • Journal of Pharmaceutical Investigation
    • /
    • v.6 no.1
    • /
    • pp.26-32
    • /
    • 1976
  • Dicalcium phosphate dihydrate (DCPD) is the most widely-used dentifrice abrasive in non-therapeutic tooth-paste requiring, low abrasive level, high stability and excellent compatibility with other formulation ingredients. One of the difficulties encountered in the use of this material in tooth-paste is that unless storage of the product is maintained at a relative low temperature there is a distinct tendency to lose water of crystallization. Another difficulty which has been encountered is that there is a tendency for the product to become lumpy. Various means have been proposed for increasing the stability and overcoming the lumping tendency, most of which means comprise the addition of stabilizing agent. But there is not any report about the relationships between the mechanism of dehydration, physical properties, structure and manufacturing condition. In this experiment, DCPD were manufactured by methods of Moss' patent, its two varied and J.P.VIII, these were studied by means of stability test, IR spectra, and DTA. According to the manufacturing conditions, DCPD has different physical properties and structures, i. e., monoclinic system of low drying temperature, triclinic system of high drying temperature. Dehydration of DCPD may be supposed one step debydration at about $100^{\circ}$ and it finaly converts to ${\gamma}-pyrophosphate$ at about $465^{\circ}$ and if the drying temperature is high it becomes DCP anhydrous. DCPD made by Moss' patent is thought of the best polishing agent of tooth-paste.

  • PDF

Low-Temperature Synthesis of Spinel Powders by the Emulsion Technique (MgO-$Al_2O_3$-$SiO_2$계 요업원료의 제조 및 소결특성 -에멜젼법에 의한 Spinel 분체의 저온합성-)

  • 현상훈;이희수;김의수
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.5
    • /
    • pp.661-667
    • /
    • 1990
  • Spinel powders were synthesized at the comparatively low-temperature range(800~90$0^{\circ}C$) by the emulsion-hot kerosene drying method and the effects of kerosene-evaporative conditions on powder characteristics were investigated. In emulsion drying, more unagglomerated and sinterable powders could be synthesized through rapid evaporation of emulsion at the higher kerosene temperature. The completion of formation reaction of spinel observed at the low-temperature range confirmed the high reactivity of powders. The relative theoretical density and the fracture toughness of spinel pellets sintered at 1$650^{\circ}C$ for 4hrs. were 98% and 2.1MN/m3/2, respectively.

  • PDF

Effect of Drying Methods on the Production of Graphenes Oxide Powder Prepared by Chemical Exfoliation (화학적 박리법으로 제조된 산화그래핀 분말의 건조방법에 따른 물성 비교)

  • Rho, Sangkyun;Noh, Kyung-Hun;Eom, Sung-Hun;Hur, Seung Hyun;Lim, Hyung Mi
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.592-598
    • /
    • 2013
  • Graphene oxide powders prepared by two different drying processes, freeze drying and spray drying, were studied to compare the effect of the drying method on the physical properties of graphene oxide powder. The graphene oxide dispersion was prepared from graphite by chemical delamination with the aid of sulfuric acid and permanganic acid, and the dispersion was further washed and re-dispersed in a mixed solvent of water and isopropyl alcohol. A freeze drying method can feasibly minimize damage to the sample, but it requires a long process time. In contrast, spray drying is able to remove a solvent in a relatively short time, though this process requires exposure to a high temperature for a rapid evaporation of the solvent. The powders prepared by freeze drying and spray drying were characterized and compared by Raman spectroscopy, X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and by an elemental analysis. The graphene oxide powders showed similar chemical compositions; however, the morphologies of the powders differed in that the graphene oxide prepared by spray drying had a winkled morphology and a higher apparent density compared to the powder prepared by freeze drying. The graphene oxide powders were reduced at $900^{\circ}C$ in an atmosphere of $N_2$. The effect of the drying process on the properties of the reduced graphene oxide was examined by SEM, TEM and Raman spectroscopy.

Fabrication Processes and Properties of High Volume Fraction SiC Particulate Preform for Metal Matrix Composites (금속복합재료용 고부피분율 SiC분말 예비성형체의 제조공정과 특성)

  • 전경윤
    • Journal of Powder Materials
    • /
    • v.5 no.3
    • /
    • pp.184-191
    • /
    • 1998
  • The fabrication process and properties of SiC particulate preforms with high volume fraction above 50% were investigated. The SiC particulate preforms were fabricated by vacuum-assisted extraction method after wet mixing of SiC particulates of 48 ${\mu}m$ in diameter, $SiO_2$ as inorganic binder, cationic starch as organic binder and polyacrylamide as dispersant in distilled water. The SiC particulate preforms were consolidated by vacuum-assisted extraction, and were followed by drying and calcination. The drying processes were consisted with natural drying at $25^{\circ}C$ for 36 hrs and forced drying at 10$0^{\circ}C$ for 12 hrs in order to prevent the micro-cracking of SiC particulates preform. The compressive strengths of SiC particulate preforms were dependent on the inorganic binder content, calcination temperature and calcination time. The compressive strength of SiC preform increased from 0.47 MPa to 1.79 MPa with increasing the inorganic binder content from 1% to 4% due to the increase of $SiO_2$ flocculant between the interfaces of SiC particulates. The compressive strength of SiC preform increased from 0.90 MPa to 3.21 MPa with increasing the calcination temperatures from 800 to 120$0^{\circ}C$ under identical calcination time of 4hrs. The compressive strength of SiC preform increased from 0.92 to 1.95 MPa with increasing the calcination time from 2 hrs to f hrs at calcination temperature of 110$0^{\circ}C$. The increase of compressive strength of SiC preform with increasing the calcination temperature and time is due to the formation of crystobalite $SiO_2$ phase at the interfaces of SiC particulates.

  • PDF

Effect of Kerfing and Incising Pretreatments on High-Temperature Drying Characteristics of Cedar and Larch Boxed-Heart Timbers with Less than 150 mm in Cross Section Size (배할 및 인사이징 전처리가 횡단면 크기 150 mm 이하 삼나무와 낙엽송 수심재의 고온건조특성에 미치는 영향)

  • LEE, Chang-Jin
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.345-363
    • /
    • 2020
  • This study was conducted to identify the effect of kerfing and incising pretreatments on high-temperature drying characteristics of cedar and larch boxed-heart timbers with a cross section of less than 150 mm. The result showed that the pretreatments have made a significant difference regarding surface check and shrinkage. Although the kerfing was suitable as a pretreatment to reduce the occurrence of surface check, the incising was not suitable as a pretreatment since the knives of timber joined together, causing the conversion to the surface checks. The shrinkage showed a significant result that the final moisture content was reduced in the order of incising, kerfing, and kerfing-incising after the drying process based on the pretreatment condition. Twist was more affected by the grain angle than the anisotropy of the juvenile wood, and there was no effect of pretreatments.

Optimization of Preparation Variables for Trimyristin Solid Lipid Nanoparticles

  • Choi, Mi-Hee;Lee, Mi-Kyung
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.1
    • /
    • pp.51-55
    • /
    • 2007
  • Solid lipid nanoparticles (SLNs) have been regarded to behave similar to the vegetable oil emulsions because emulsions of lipid melts are formed before lipid droplets being solidified to turn into SLNs. Compared to lipid emulsion, however, it has been more difficult to obtain stable SLNs and needs more extensive considerations on stabilizer and manufacturing process. In the present study, we tried to prepare phosphatidylcholine-based trymyristin (TM) SLNs using high pressure homogenization method and optimize the manufacturing variables such as homogenization pressure, number of homogenization cycles, cooling temperature, co-stabilizer and freeze-drying with cryoprotectants. Nano-sized TM particles could be Prepared using egg Phosphatidylcholine and pegylated phospholipids ($PEG_{2000}$PE) as stabilizers. Based on the optimization study, the dispersion was manufactured by homogenization under the pressure of 100 MPa for more than 5 cycles, and solidifying the intermediately formed lipid melt droplets by dipping in liquid nitrogen followed by thawing at room temperature. In addition, TM SLNs could be freeze-dried and then redispersed easily without significant particle size changes after freeze drying with 10% and 12.5% sucrose or trehalose. The TM SLNs established in this study can be used as delivery system for drugs and cosmetics.