• Title/Summary/Keyword: High-temperature design

Search Result 2,764, Processing Time 0.029 seconds

Low Power Design on Heater and Cathode of Electron Gun for High Resolution CRT (고해상도 CRT용 전자총의 히터 및 캐소드 저전력 설계)

  • Kim Hack-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.618-625
    • /
    • 2005
  • This paper has achieved that an optimal design and experiments of heater and cathode of electron gun that serve to embody high current density in CRT display. For the high brightness, high resolution and larger size in CRT display, high current density of electron gun is indispensible. An Impregnation style cathode is used, and must heighten operating temperature of heater to get high current density for this, it is proportional hereupon and power dissipation increases. In this paper, to get low power cathode with high current density, There are produced and tested sample that differ lead type of heater, coating method, the pitch and number of winding of the first and second coiling in the heat emission area for the low power design of high current density cathode heater in this paper.

Thermohydrodynamic Analysis and Pad Temperature Measurement of a Tilting Pad Journal Bearing for a Turbine Simulator (터빈 시뮬레이터용 틸팅패드 저널베어링의 열윤활 해석 및 패드 온도 측정)

  • Lee, Donghyun;Sun, Kyungho
    • Tribology and Lubricants
    • /
    • v.33 no.3
    • /
    • pp.112-118
    • /
    • 2017
  • Tilting pad journal bearings(TPJBs) are widely used for high speed rotating machinery owing to their rotordynamic stability and thermal management feature. With increase in the rotating speed of such machinery, an increasingly important aspect of TPJB design is the prediction of their thermal behaviors. Researchers have conducted detailed investigations in the last two decades, which provided design tools for the TPJBs. Based on these previous studies, this paper presents a thermohydrodynamic(THD) analysis model for TPJBs. To calculate pressure distribution, we solve the generalized Reynolds equation and to predict the lubricant temperature, we solve the 3D energy equation. We employ the oil mixing theory to calculate pad inlet temperature; further, to consider heat conduction via the pad, we solve the heat conduction equation for the pads. We assume the shaft temperature as the averaged oil film temperature and apply natural convection boundary conditions to the pad side and back surfaces. To validate the analysis model, we compare the predicted pad temperatures with those from previous research. The results show good agreement with previous research. In addition, we conduct parametric studies on a TPJB which was used in a gas turbine simulator system. The predicted results show that film temperature largely depends on the rotating speed and oil supply condition.

Cycle simulation of a triple effect LiBr/water absorption chiller (삼중효용 LiBr/물 흡수식 냉방기의 사이클 시뮬레이션)

  • 조광운;정시영;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • Basic design of a 50USRT(175㎾) triple effect absorption chiller driven by hot gas has been carried out for both parallel and series flow cycles. Parallel flow cycle showed higher COP, however, the temperature in the generator was also higher than that in series flow cycle. Dynamic operation behavior of a parallel flow system at off-design conditions, such as the change in heat transfer medium temperature or the construction change of the system components, has been investigated in detail. It was found that the cooling capacity was seriously decreased by reducing hot gas flow rate and UA-value in the high temperature generator. However, the system COP was improved, because thermal load in the system components was reduced. The COP and the cooling capacity was found to be improved as cooling water temperature decreased or chilled water temperature increased. The optimum ratio of solution distribution could be suggested by considering the COP, the cooling capacity and the highest temperature in the system, which is critical for corrosion.

  • PDF

Thermal design of reflow oven with PCB-module (이송 모듈을 사용한 리플로우 오븐의 열유동해석)

  • Jeong, Won-Jung;Kwon, Hyun-Goo;Cho, Hyung-Hee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.3 s.16
    • /
    • pp.29-32
    • /
    • 2006
  • Because of new requirements related to the employment of SMT(Surface Mounting Technology) manufacturing and the diversity of components on high density PCB(Printed Circuit Boards), Thermal control of the reflow process is required in order to achieve acceptable yields and reliability of SMT assemblies. Accurate control of the temperature distribution during the reflow process is one of the major requirements, especially in lead-free assembly. This study has been performed for reflow process using the commercial CFD(Computational Fluid Dynamics) tool for predicting flow and temperature distributions. Porous plate was installed to prevent leakage flow which was one of the major problem of temperature uniformity in the reflow process. There is a separation region where the flow is turned. Outside wall made of porous plate is to prevent and minimize separation region for acquiring uniform temperature during operation. This paper provided design concept from CFD results of the steady state temperature distribution and flow field inside a reflow oven.

  • PDF

Intelligent cooling control for mass concrete relating to spiral case structure

  • Ning, Zeyu;Lin, Peng;Ouyang, Jianshu;Yang, Zongli;He, Mingwu;Ma, Fangping
    • Advances in concrete construction
    • /
    • v.14 no.1
    • /
    • pp.57-70
    • /
    • 2022
  • The spiral case concrete (SCC) used in the underground powerhouse of large hydropower stations is complex, difficult to pour, and has high requirements for temperature control and crack prevention. In this study, based on the closed-loop control theory of "multi-source sensing, real analysis, and intelligent control", a new intelligent cooling control system (ICCS) suitable for the SCC is developed and is further applied to the Wudongde large-scale underground powerhouse. By employing the site monitoring data, numerical simulation, and field investigation, the temperature control quality of the SCC is evaluated. The results show that the target temperature control curve can be accurately tracked, and the temperature control indicators such as the maximum temperature can meet the design requirements by adopting the ICCS. Moreover, the numerical results and site investigation indicate that a safety factor of the spiral case structure was sure, and no cracking was found in the concrete blocks, by which the effectiveness of the system for improving the quality of temperature control of the SCC is verified. Finally, an intelligent cooling control procedure suitable for the SCC is proposed, which can provide a reference for improving the design and construction level for similar projects.

Developing an improved water discharge anchor & trap bolt to prevent basic salt penetration to harbor structures (해수 염기 침투방지를 위한 성능개선 형 물배출 앵커 및 트랩볼트 개발에 관한 연구)

  • Ock, Jong-Ho;Moon, Sang-Deok;Lee, Hwa-Sun;Shin, Kyung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.674-682
    • /
    • 2018
  • Large industrial motors require a large area because of the high risk of shutdown accidents and large industrial accidents due to the lowering of the dielectric strength of the armature windings and overheating problems. Therefore, there is a demand for a large-capacity motor that has small size, light weight, and excellent dielectric strength compared with conventional motors. Superconducting motors have advantages of high efficiency and output power, low size, low weight, and improved stability. This results from greatly increasing the magnetic field generation by using superconductive field coils in rotating machines such as generators and motors. It is very important to design and analyze the cooling system to lower the critical temperature of the wires to achieve superconducting performance. In this study, a field loss analysis and low-temperature heat transfer analysis of the cooling system were performed through the conceptual design of a 100-HP high-temperature superconducting synchronous motor. The field loss analysis shows that a uniform pore magnetic flux density appears when high-temperature superconducting wire is used. The low-temperature heat transfer analysis for gaseous neon and liquid neon showed that a flow rate of 1 kg/min of liquid neon is suitable for maintaining low-temperature stability of the high-temperature superconducting wire.

SAW Sensor Network Design and Reflected Waves Removal for Temperature Measurement (온도 센싱을 위한 SAW 센서 네트워크 설계 및 다중경로 반사파 제거)

  • Kyung-Soon Lee;Kyung Heon Koo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.469-472
    • /
    • 2023
  • If temperature management is required in factory or environmental monitoring, temperature can be measured by connecting various sensors wired or wirelessly. Surface acoustic wave sensors measure temperature using changes in acoustic waves on the sensor surface according to temperature, and are useful for wireless networks. In this paper, in order to build a wireless temperature measurement system in the 900 MHz frequency band, the temperature characteristics of the passive SAW sensor were measured, and the analysis and removal of multipath reflection wave effect inside the high temperature chamber were conducted. The resonant frequency of the SAW sensor was measured, and radio transmission/reception and multipath reflected wave removal techniques were proposed in the shielded chamber.

Change of Mechanical Properties of Injection-Molded Glass-Fiber-Reinforced Plastic (GFRP) According to Temperature and Water Absorption for Vehicle Weight Reduction (차량 경량화를 위한 사출성형 유리섬유강화플라스틱의 온도 및 수분 흡수에 따른 기계적 물성 변화)

  • Chun, Doo-Man;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.2
    • /
    • pp.199-204
    • /
    • 2013
  • Owing to the global energy crisis, studies have strongly focused on realizing energy savings through vehicle weight reduction using light metal alloys or polymer composites. Polymer composites afford many advantages including enabling the fabrication of complex shapes by injection molding, and glass and carbon fibers offer improved mechanical properties. However, the high temperature in an engine room and the high humidity during the rainy season can degrade the mechanical properties of the polymer. In this study, the mechanical properties of injection-molded glass-fiber-reinforced polymer were assessed at a temperature of $85^{\circ}C$ and the maximum moisture absorption conditions. The result showed a 23% reduction in the maximum tensile strength under high temperature, 30% reduction under maximum moisture absorption, and 70% reduction under both heat and moisture conditions. For material selection during the design process, the effects of high temperature and high humidity should be considered.

Design of a non-contacting single infrared sensor for high frequency dental casting machine (치과용 고주파 주조기를 위한 비접촉 단일 온도센서 설계)

  • Hwang, In;Won, Yonggwan;Lee, Sang-Hun;Song, Sung-Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.8
    • /
    • pp.1546-1552
    • /
    • 2016
  • In addition, because it uses preheating to dissolve an alloy in general, it is hard to regulate the appropriate melting temperature of the alloy and brewing time and shows the defect of the supplementation thing due to the super-heating. Once the alloy is molten and then most of the casting by attaching a sight glass or non-contact temperature sensor is suitable casting temperature the operator pressing a button to generate a centrifugal force to inject the molten alloy into a crucible in the casting ring. These results, and most of the cast temperature is too high or too low to generate a lot of casting defects do not get into a uniform cast body. In this paper, we developed a dental casting machine for high frequency using a single temperature sensor which can measure the actual temperature of the alloy than the temperature of the external non-contact measurement using a temperature sensor.

Alloy Design and Properties of Ni based Superalloy LESS 1: I. Alloy Design and Phase Stability at High Temperature (Ni기 초내열 합금 LESS 1의 합금설계 및 평가: I. 합금 설계 및 고온 상 안정성 평가)

  • Youn, Jeong Il;Kang, Byung Il;Choi, Bong Jae;Kim, Young Jig
    • Journal of Korea Foundry Society
    • /
    • v.33 no.5
    • /
    • pp.215-225
    • /
    • 2013
  • The alloys required for fossil power plants are altered from stainless steel that has been used below $600^{\circ}C$ to Ni-based alloys that can operate at $700^{\circ}C$ for Hyper Super Critical (HSC) steam turbine. The IN740 alloy (Special Metals Co. USA) is proposed for improved rupture strength and corrosion resistance at high temperature. However, previous studies with experiments and simulations on stable phases at about $700^{\circ}C$ indicated the formation of the eta phase with the wasting of a gamma prime phase, which is the most important reinforced phase in precipitation hardened Ni alloys, and this resulted in the formation of precipitation free zones to decrease the strength. On the basis of thermodynamic calculation, the new Ni-based superalloy named LESS 1 (Low Eta Sigma Superalloy) was designed in this study to improve the strengthening effect and structure stability by depressing the formation of topologically close packed phases, especially sigma and eta phases at high temperature. A thermal exposure test was carried out to determine the microstructure stability of LESS 1 in comparison with IN740 at $800^{\circ}C$ for 300 hrs. The experimental results show that a needle-shaped eta phase was formed in the grin boundary and it grew to intragrain, and a precipitation free zone was also observed in IN740, but these defects were entirely controlled in LESS 1.