• Title/Summary/Keyword: High-temperature design

Search Result 2,757, Processing Time 0.036 seconds

Effects of Optimized Co-treatment Conditions with Ultrasound and Low-temperature Blanching Using the Response Surface Methodology on the Browning and Quality of Fresh-cut Lettuce (반응표면분석법으로 최적화한 초음파와 저온 블랜칭의 병용처리 조건이 신선편이 양상추의 갈변과 품질에 미치는 영향)

  • Kim, Do-Hee;Kim, Su-Min;Kim, Han-Bit;Moon, Kwang-Deog
    • Food Science and Preservation
    • /
    • v.19 no.4
    • /
    • pp.470-476
    • /
    • 2012
  • Enzymatic action and microbial growth degrade the quality of fresh-cut lettuce. Browning, a bad smell, and softening during storage are the major forms of quality deterioration. Health-oriented consumers tend to avoid foods treated with chemicals to maintain their freshness. This study was conducted to evaluate the change in the quality of fresh-cut lettuce with combined low-temperature blanching (LB) and ultrasonication (US). The optimum condition was selected using the response surface methodology (RSM), through a regression analysis with the following independent variables; the ultrasonication time (X1), blanching temperature (X2), blanching time (X3), and dependent variable; ${\Delta}E$ value (y). It was found that the condition with the lowest ${\Delta}E$ value occurred with combined 90s US and $45^{\circ}C$ 90s LB (US+LB). The combined treatment group (US+LB) was stored at $10^{\circ}C$ for 9 days with the control group and each single-treatment group, with low-temperature blanching and ultrasonication. Overall, the US+LB group had a significantly high $L^*$ value, which indicates significantly low $a^*$, $b^*$, ${\Delta}E$, browning index, PPO, and POD activity values, and a low total bacteria count (p < 0.05). The US+LB group also had the highest sensory score (except for aroma and texture; p > 0.05).

A Study on the Evaluation of Materials for Aircraft Turbofan Engine Using Data Base. (항공기용 터어보팬 엔진의 재료선정용 DATA BASE를 이용한 재료평가에 관한 연구)

  • Kim, Gwang-Bae;Bu, Jun-Hong;Kim, Hak-Bong;Im, Gyeong-Ho;Yu, Sang-Sin
    • Korean Journal of Materials Research
    • /
    • v.1 no.3
    • /
    • pp.156-167
    • /
    • 1991
  • The purpose of this study is to develop a data base for material selection of turbofan engines, which is preferred in these days on many application due to their high performance with economical operation. Hundreds of Super Alloys have been developed by this time, each having special properties. Since it is very difficult task for a design engineer to select materials of adequate Properties for specific engine components, a good data bate is strongly desired to manage informations on various kinds of materials. However, no basic research is reported in this area so far in our country. The operating conditions such as temperature, pressure, rpm of spools are assumed to be provided by other mechanical studies. Creep rupture strength, corrosion resistance, yield strength, thermal expansion, melting point, etc., are considered as typical properties in this study to search a group of candidate materials. Formability, manufacturing or purchase cost can also be important variables to be considered. As a result of this study, a user-friendly computer program has been developed for input of new material information, interactive material selection, and output of selection results. Finally, discussion is presented from. the viewpoint of materials engineering. A method to evaluate the performance of the selected materials is also suggested.

  • PDF

Numerical Simulation of CNTs Based Solid State Hydrogen Storage System (탄소나노튜브 기반의 고체수소저장시스템에 관한 전산해석)

  • Kim, Sang-Gon;HwangBo, Chi-Hyung;Yu, Chul Hee;Nahm, Kee-Suk;Im, Yeon-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.644-651
    • /
    • 2011
  • Storing hydrogen in solid state hydride is one of the best promising methods for the future hydrogen economy. The total performance of such systems depends on the rate at which the amount of mass and heat migration is supplied to solid hydride. Therefore, an accurate modeling of the heat and mass transfer is of prime importance in optimizing the design of such systems. In this work, Hydrogen storage in Pt-CNTs hydrogen reactor has been intensively investigated by solving 2 dimensional mathematical models. Using a CFD computer software, systematic studies have been performed to elucidate the effect of heat and mass transfer during hydrogen charging periods. It was revealed that the optimized design of hydrogen storage vessel can prevent the increase of system temperature and the charging time due to the convective cooling effects inside the vessels at even high charging pressure. Because none has reported the critical issues of heat and mass transfer for CNT based hydrogen storage system, this work can support the first insight of the optimal design for solid state hydrogen storage system based on CNT in the near future.

A Novel Runner Design for Flow Balance of Cavities in Multi-Cavity Injection Molding (다수 빼기 사출성형에서 캐비티간 충전균형을 위한 새로운 런너의 설계)

  • Park, Seo-Ri;Kim, Ji-Hyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.561-568
    • /
    • 2009
  • Small injection molded articles are generally molded by multi-cavity injection molding. The most important thing in multi-cavity molding is flow imbalance among the cavities because it affects the physical property and the quality of products. The cavity filling balance can be achieved by flow balance in the runner through the thermal balance. In this study, novel screw type runner or helical type runner has been developed for the flow balance in the runner and performed experiment and computer simulation. Flow balance has been observed using various screw type runners for several resins such as amorphous and crystalline polymers including low and high viscosities grades. Flow balance experiments have been performed for various injection speeds since the flow balance can be affected by injection speed among the injection conditions. Experimental results have been compared with computational results and they showed good agreement. The cavity filling balance can be achieved by the screw runner where the temperature distribution is uniform through the circulation flow along the screw channel in the screw runner. It has been verified that the novel screw runner is very effective device in flow balance in the multi-cavity injection molding. cavity filling imbalance, multi-cavity injection molding, runner design, screw runner, thermal balance.

Low temperature plasma deposition of microcrystalline silicon thin films for active matrix displays: opportunities and challenges

  • Cabarrocas, Pere Roca I;Abramov, Alexey;Pham, Nans;Djeridane, Yassine;Moustapha, Oumkelthoum;Bonnassieux, Yvan;Girotra, Kunal;Chen, Hong;Park, Seung-Kyu;Park, Kyong-Tae;Huh, Jong-Moo;Choi, Joon-Hoo;Kim, Chi-Woo;Lee, Jin-Seok;Souk, Jun-H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.107-108
    • /
    • 2008
  • The spectacular development of AMLCDs, been made possible by a-Si:H technology, still faces two major drawbacks due to the intrinsic structure of a-Si:H, namely a low mobility and most important a shift of the transfer characteristics of the TFTs when submitted to bias stress. This has lead to strong research in the crystallization of a-Si:H films by laser and furnace annealing to produce polycrystalline silicon TFTs. While these devices show improved mobility and stability, they suffer from uniformity over large areas and increased cost. In the last decade we have focused on microcrystalline silicon (${\mu}c$-Si:H) for bottom gate TFTs, which can hopefully meet all the requirements for mass production of large area AMOLED displays [1,2]. In this presentation we will focus on the transfer of a deposition process based on the use of $SiF_4$-Ar-$H_2$ mixtures from a small area research laboratory reactor into an industrial gen 1 AKT reactor. We will first discuss on the optimization of the process conditions leading to fully crystallized films without any amorphous incubation layer, suitable for bottom gate TFTS, as well as on the use of plasma diagnostics to increase the deposition rate up to 0.5 nm/s [3]. The use of silicon nanocrystals appears as an elegant way to circumvent the opposite requirements of a high deposition rate and a fully crystallized interface [4]. The optimized process conditions are transferred to large area substrates in an industrial environment, on which some process adjustment was required to reproduce the material properties achieved in the laboratory scale reactor. For optimized process conditions, the homogeneity of the optical and electronic properties of the ${\mu}c$-Si:H films deposited on $300{\times}400\;mm$ substrates was checked by a set of complementary techniques. Spectroscopic ellipsometry, Raman spectroscopy, dark conductivity, time resolved microwave conductivity and hydrogen evolution measurements allowed demonstrating an excellent homogeneity in the structure and transport properties of the films. On the basis of these results, optimized process conditions were applied to TFTs, for which both bottom gate and top gate structures were studied aiming to achieve characteristics suitable for driving AMOLED displays. Results on the homogeneity of the TFT characteristics over the large area substrates and stability will be presented, as well as their application as a backplane for an AMOLED display.

  • PDF

Long-Rails Stress Analysis of High-Speed Railway Continuous Bridges Subject to Operating Basis Earthquake (사용지진을 고려한 고속철도 연속교 장대레일의 응력 해석)

  • 김용길;권기준;고현무
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.59-66
    • /
    • 2002
  • Long-rails in railways and high-speed railway are subjected to additional stresses resulted from the displacements inconsistence between upper structures, and this phenomenon is more remarkable in continuous bridges than in simple bridges. For the sake of safety, railways have to guarantee trains to stop safely without derailment even in the event of earthquake. The influences of acceleration, braking, and temperature were analyzed by static nonlinear method. But earthquake loads that require dynamic nonlinear analysis are not considered in these methods. Because linear relation between relative displacements of decks and rail stresses is not guaranteed at the nonlinear systems such as long rails on the bridges, it is required compute to rail stresses considering both braking and earthquake load by nonlinear dynamic analysis method. In this study, dynamic analysis method with material non-linearity for rails on continuous bridges according to the Taiwan High Speed Railway(THSR) Design Specification volume 9 was developed. And additional stresses and displacements of long rails for acceleration, braking, and earthquake loads were analyzed by this method.

Korean Medicine for Thoracolumbar Compression Fracture in Korean Literature : a Systematic Review (흉요추 압박 골절의 한의학적 치료에 대한 국내 임상 근거 : 체계적 문헌 고찰)

  • Bae, Ji Min;Kim, Dae Hun;Kim, Jae Kyu;Lee, Byung Ryul;Yang, Gi Young;Kim, Kun Hyung
    • Journal of Acupuncture Research
    • /
    • v.32 no.4
    • /
    • pp.147-156
    • /
    • 2015
  • Objectives : This study aims to evaluate the effectiveness and safety of Korean medicine for a thoracolumbar compression fracture. Methods : We searched six Korean databases (DBPIA, Korean Studies Information Service System, Oriental Medicine Advanced Searching Integrated System, National Digital Science Library, Research Information Sharing Service, KoreaMed) (up to June 2015) and the Journal of Korean Acupuncture and Moxibustion Society. Unpublished studies were also searched. Clinical research, other than case reports involving less than 10 patients, were eligible. The effectiveness and safety of Korean Medicine was analyzed. The 'Risk of Bias' was assessed using the 'Risk of Bias' assessment tool for non-randomized studies as well as the Cochrane Collaboration's 'Risk of Bias' tool. Results : We found 12 before-after studies (374 patients). There was no randomized trial. All studies combined at least three different types of Korean medicine treatments. The period of treatment varied between less a week and 154 days. All the included studies reported improvements in pain, functional disability related to lower back pain, global assessment, and benefits in the compression ratio of a fractured vertebrae and skin temperature measured by digital infrared thermal imaging in comparison with the baseline. However, all studies had a high risk of bias and three studies reported mild adverse events. Conclusions : There is no randomized trial for the role of Korean medicine for patients with a thoracolumbar compression fracture. The effectiveness and safety of Korean medicine for this population remains unclear. Findings in this review are seriously biased due to observational design and a high risk of bias included in the studies. Future high-quality randomized trials are warranted.

Numerical Analysis of Warpage and Reliability of Fan-out Wafer Level Package (수치해석을 이용한 팬 아웃 웨이퍼 레벨 패키지의 휨 경향 및 신뢰성 연구)

  • Lee, Mi Kyoung;Jeoung, Jin Wook;Ock, Jin Young;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • For mobile application, semiconductor packages are increasingly moving toward high density, miniaturization, lighter and multi-functions. Typical wafer level packages (WLP) is fan-in design, it can not meet high I/O requirement. The fan-out wafer level packages (FOWLPs) with reconfiguration technology have recently emerged as a new WLP technology. In FOWLP, warpage is one of the most critical issues since the thickness of FOWLP is thinner than traditional IC package and warpage of WLP is much larger than the die level package. Warpage affects the throughput and yield of the next manufacturing process as well as wafer handling and fabrication processability. In this study, we investigated the characteristics of warpage and main parameters which affect the warpage deformation of FOWLP using the finite element numerical simulation. In order to minimize the warpage, the characteristics of warpage for various epoxy mold compounds (EMCs) and carrier materials are investigated, and DOE optimization is also performed. In particular, warpage after EMC molding and after carrier detachment process were analyzed respectively. The simulation results indicate that the most influential factor on warpage is CTE of EMC after molding process. EMC material of low CTE and high Tg (glass transition temperature) will reduce the warpage. For carrier material, Alloy42 shows the lowest warpage. Therefore, considering the cost, oxidation and thermal conductivity, Alloy42 or SUS304 is recommend for a carrier material.

Studies of application of artificial ground freezing for a subsea tunnel under high water pressure - focused on case histories - (고수압 해저터널 건설을 위한 동결공법 적용성에 관한 연구 - 사례를 중심으로 -)

  • Son, Young-Jin;Lee, Kyu-Won;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.431-443
    • /
    • 2014
  • In this paper case studies of artificial ground freezing, which have not been applied in Korea, have been investigated for the water cut-off in a subsea tunnel under high water pressure and the most commonly used cooling mediums of brine and liquid nitrogen are examined. Since sea water with pressure has the lower freezing point than pure water, the lower temperature cooling medium is required in the application of subsea tunnel. Also, the cooling medium must have refrigeration safety and is able to reduce executing time. Brine freezing system can reuse cooling medium and is safer than liquid nitrogen freezing. But it takes more time to freeze ground and needs complex circulation plants. On the other hand, liquid nitrogen freezing system can't recycle cooling medium and may cause breathing problems or asphyxiation through oxygen deficiency. But, freezing with liquid nitrogen is fast and requires simple refrigeration equipment. Principal elements of design for ground freezing in subsea tunnel have been extracted and these elements are needed further research.

A Study on the Wear Characteristics of Aluminizing Steel ( 1 ) - Wear in Run-in Period on Rolling-Sliding Contact - (알루미나이징 강의 마모특성에 관한 연구 ( 1 ) - Rolling-Sliding 마찰의 초기마모영역을 중심으로 -)

  • 이규용
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 1978
  • It is well known that the aluminizing steel is excellent in corrosion resistance and heat resistance. Therefore it has been used as boiler parts, heat exchanger parts and guide rails which are used under comparatively simple conditions. Recently, it has been noticed that aluminizing steel has high resistance to various atmosphere, high temperature oxidation and seawater resistance. So its usage has been extended widely to the production of parts such as intake and exhaust valve of internal combustion engine, turbine blade and pipelines On ships which required such properties. It is considered that aluminium coated steel is excellent in wear resistance because of high hardness on main ingredient FezAIs of Fe-AI alloy layer existed in diffusion coating layer. And it will beused as a new material taking wear resitance with seawater resistance in marine field. However it is difficult to findout any report concering the wear behaviors or properties of alum in izing steel. In this study the experiment was carried out under the condition of rolling-sliding contact using an Amsler-type wear testing machine at 0.80, 0.91, 1. 10, 1. 25% of slip ratio and 55.43, 78.38, 110.85 kg/mm^2 of Hertz's contact stress in run-in period for the purpose of service-ability test of aluminizing steel as a wear resisting material and obtaining the available design data. The followings are the obtained results from the experimen tal study; 1) The 2nd diffusion material has most excellent wear resistance. This material has brought out about 18% decrease of wear weight in a lower friction load level and 40~G decrease in a higher level comparing to the raw material. 2) Satisfactory effect of wear resistivity cannot be much expected in 2nd diffusion specimens. This is considered due to the formation of fine void in the alloy layer near the boundary to the aluminium layer. 3) Fracture on friction surface of aluminizing steel by the rolling-sliding contact is spalling, and spalling crack occurres initially beneath the specimen surface near the boundary in diffusion coating layer.

  • PDF