• Title/Summary/Keyword: High-temperature design

Search Result 2,777, Processing Time 0.033 seconds

The Study on Dielectric Property and Thermal Stability of $Ta_2O_{5}$ Thin-films ($Ta_2O_{5}$ 커패시터 박막의 유전 특성과 열 안정성에 관한 연구)

  • Kim, In-Seong;Lee, Dong-Yun;Song, Jae-Seong;Yun, Mu-Su;Park, Jeong-Hu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.185-190
    • /
    • 2002
  • Capacitor material utilized in the downsizing passive devices and dynamic random access memory(DRAM) requires the physical and electrical properties at given area such as capacitor thickness reduction, relative dielectric constant increase, low leakage current and thermal stability. Common capacitor materials, $SiO_2$, $Si_3N_4$, $SiO_2$/$Si_3N_4$,TaN and et al., used until recently have reached their physical limits in their application to several hundred angstrom scale capacitor. $Ta_2O_{5}$ is known to be a good alternative to the existing materials for the capacitor application because of its high dielectric constant (25 ~35), low leakage current and high breakdown strength. Despite the numerous investigations of $Ta_2O_{5}$ material, there have little been established the clear understanding of the annealing effect on capacitance characteristic and conduction mechanism, design and fabrication for $Ta_2O_{5}$ film capacitor. This study presents the structure-property relationship of reactive-sputtered $Ta_2O_{5}$ MIM capacitor structure processed by annealing in a vacuum. X-ray diffraction patterns skewed the existence of amorphous phase in as-deposited condition and the formation of preferentially oriented-$Ta_2O_{5}$ in 670, $700^{\circ}C$ annealing. On 670, $700^{\circ}C$ annealing under the vacuum, the leakage current decrease and the enhanced temperature-capacitance characteristic stability. and the leakage current behavior is stable irrespective of applied electric field. The results states that keeping $Ta_2O_{5}$ annealed at vacuum gives rise to improvement of electrical characteristics in the capacitor by reducing oxygen-vacancy and the broken bond between Ta and O.

A New Test Method to Evaluate Influence of $Al_2O_3$ to Rubber Insulator in Solid Propellant Rocket Motor (고체추진기관의 $Al_2O_3$가 고무내열재에 미치는 영향을 평가하는 시험방법 연구)

  • Lee, Hyung-Sik;Kang, Yoon-Goo;Lim, Soo-Yong;Oh, Jong-Yun;Lee, Kyung-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.193-198
    • /
    • 2010
  • In solid propellant rocket motors, $Al_2O_3$, one of combustion products, can be accumulated inside a combustion chamber. A special rocket motor was designed and tested to simulate thermal reaction of rubber insulator affected by the deposited slag. We successfully demonstrated through a dynamic radioscopy that the slag was deposited at the location as designed. In this paper we present a new test method which can simulate a high temperature and pressure environment in combustion chamber to evaluate material characteristics of rubber insulator and can provide design data to decide its thickness for a new solid rocket motor. The solid rocket motor, which has an average chamber pressure of 770 psia and a burning time of 50 seconds, was tested. The results show that erosion of EPDM insulator is more affected by a gas velocity rather than by the thermal reaction of slag with a high thermal capacity.

  • PDF

A Design Study of Phase Changing Heat Exchanger for Environmental Control System (환경조절장치용 상변화열교환기의 개념설계연구)

  • Yoo, Young-June;Oh, Chang-Mook;Lee, Hyung-Joo;Min, Seong-Ki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.628-635
    • /
    • 2010
  • Properties of bleed air that is air source of ECS(Environmental Control System) can be rapidly changed with airplane engine operating conditions during flight. Therefore, ECS can be operated at a high performance or not during flight. So, high performance ACM has to be developed in order to flight safely. A adaptability of phase changing heat exchanger was esteemed at ACM type ECS in this study. As a result of this study, it is found that ECS outlet temperature can be controlled in a certain range with the phase changing phenomenon.

  • PDF

Cooling Performance Study of a Impinging Water Jet System with Heat Sink for High Power LEDs (분사냉각모듈 내에 부착된 히트싱크에 따른 고출력 LED의 냉각성능에 관한 연구)

  • Ku, G.M.;Kim, K.;Park, S.H.;Choi, S.D.;Heo, J.W.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.152-158
    • /
    • 2013
  • The purpose of this study is to investigate cooling performance of high power LEDs from 100 to 200 W class by using a jet impingement cooling module. The numerical analysis of forced convection cooling inside cooling module is carried out using a multi-purpose CFD software, FLUENT 6.3. In the experiments, the LED cooling system consists of jet impingement module, heat exchanger, water reservoir, and pump. In the present study, the cooling performance of jet impingement cooling module is investigated to determine the effect of the heat sink types on the impinging surface, the space and length of fins. Numerical and experimental studies show the reasonable agreement of LED metal PCB temperature between those results and give the optimized design parameters such as the space of fin and the length of fin. Also, the pin fin type of heat sink is found to be more efficient than the plate type heat sink in jet impingement cooling.

Analysis for the Economic efficiency of District Heating and Gas Engine Co-generation System comparing with Central Heating System (중앙난방방식을 지역난방.소형열병합난방방식으로 전환시의 경제성 비교 분석)

  • Kim, Kyu-Saeng;Lee, Sang-Hyeok;Hong, Kyung-Pyo;Won, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.459-465
    • /
    • 2007
  • This study was conducted to calculate the LCC of a apartment complex with a type of heating system, district heating and cogeneration system. For the purpose of analyzing LCC according to size of apartment complex, 500, 1,500 and 4,000 houses of model apartment selected. This research performs design of heating system and the life cycle cost analysis including an initial cost, energy cost, maintenance and operation cost, replacement cost and renovation cost during the project period(15years). According to the calculated results, 1) Initial cost of cogeneration system with 500, 1500 and 4000 houses is higher than district heating system each of 20%, 13%, 12%. 2) In case of cogeneration system, the payback period by electric generation is 5.21, 4.92 and 4.47 years and saving cost was calculated 29 billion won, 94 billion won and 262 billion won after payback period. 3) Cogeneration system LCC was 1.12, 1.07 and 1.06 times larger than district system with the size of apartment complex. According to the case of this study district heating system is more efficient than cogeneration system in terms of the reduction of LCC. 4) Gas Engine Co-generation System is more efficient than other systems because it can collect progressive part from electric charge progressive stage system. However, the efficiency is decreasing because of raising of fuel bills(LNG) and lowering of power rate for house use. Especially the engine is foreign-made so the cost of maintenance and repair is high and the technical expert is short. 5) District heating is also affected by fuel bills so we should improve energy efficiency through recovering of waste heat(incineration heat, etc.). Also, we should supply district cooling on the pattern of heat using of let the temperature high in winter and low in summer.

  • PDF

Experimental Studies on Thermal-Fluidic Characteristics of Carbon Dioxide During Heating Process in the Near-Critical Region for Single Channel (단일채널 내 임계영역 이산화탄소 가열과정의 열유동 특성에 관한 실험적 연구)

  • Choi, Hyunwoo;Shin, Jeong-Heon;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.8
    • /
    • pp.408-418
    • /
    • 2017
  • Supercritical carbon dioxide ($sCO_2$) power system is emerging technology because of its high cycle efficiency and compactness. Meanwhile, PCHE (Printed Circuit Heat Exchanger) is gaining attention in $sCO_2$ power system technology because PCHE with high pressure-resistance and larger heat transfer surface per unit volume is fundamentally needed. Thermo-fluidic characteristics of $sCO_2$ in the micro channel of PCHE should be investigated. In this study, heat transfer characteristics of $sCO_2$ of various inlet conditions and cross-sectional shapes of single micro channel were investigated experimentally. Experiment was conducted at supercritical state of higher than critical temperature and pressure. Test sections were made of copper and hydraulic diameter was 1 mm. Convective heat transfer coefficients were measured according to each interval of the channel and pressure drop was also measured. Convective heat transfer coefficients from experimental data were compared with existing correlation. In this study, using measured data, a new empirical correlation to predict near critical region heat transfer coefficient is developed and suggested. Test results of single channel will be used for design of PCHE.

Experimental Study on Fire Resistant Capacity and Thermal Conduction of Construction Material Using the Circulation Resources (폐콘크리트 순환자원을 이용한 건설재료의 화재내력 및 단열성에 관한 실험적 연구)

  • Choi, Jea-Nam;Hong, Se-Hwa;Son, Ki-Sang
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.121-128
    • /
    • 2010
  • This is to show some basic data for introducing both circulated aggregate and recycled powder producing waste concrete. Standard-mixing design for 24MPa has been basically used and added and replaced normal aggregate with recycled powder made of waste concrete. In addition, polycarboxylate high-range water reducing agent has been used because recycled powder is missing adhesive strength and it is not compare with cement's adhesive strength. Compressive strength with powder mixture of 2%, 4%, 6%, 8%, and 10% has been decreased down to 80% of normal concrete material strength without recycled powder mixture. $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ heated concrete were compressively tested in order to find out concrete strength resistant to high temperature. heat capacity was also tested, based on the expectancy of its low conductivity. In addition, thermal conduction test was tested in order to find out concrete insulation. According to this test, when concrete was tested by fire resistance, it using the circulation aggregate was same resulted by concrete using the natural aggregate. also, recycle powder was not effecting insulation performance. but it is fit to standard on concrete insulation of building law.

Pixel-level Current Mirroring Injection with 2-step Bias-current Suppression for 2-D Microbolometer FPAs (이차원 마이크로볼로미터 FPA를 위한 이 단계 바이어스 전류 억제 방식을 갖는 픽셀 단위의 전류 미러 신호취득 회로)

  • Hwang, Chi Ho;Woo, Doo Hyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.36-43
    • /
    • 2015
  • A pixel-level readout circuit is studied for 2-dimensional microbolometer focal plane arrays (FPAs). A current mirroring injection (CMI) input circuit with 2-step current-mode bias suppression is proposed for a pixel-level architecture with high responsivity and long integration time. The proposed circuit has been designed using a $0.35-{\mu}m$ 2-poly 4-metal CMOS process for a $320{\times}240$ microbolometer array with a pixel size of $50{\mu}m{\times}50{\mu}m$. The proposed 2-step bias-current suppression has sufficiently low calibration error with wide calibration range, and the calibration range and error can be easily optimized by controlling some design parameters. Due to high responsivity and a long integration time of more than 1 ms, the noise equivalent temperature difference (NETD) of the proposed circuit can be improved to 26 mK, which is much better than that of the conventional circuits, 67 mK.

A New Test Method to Evaluate Influence of $Al_2O_3$ to Rubber Insulator in Solid Propellant Rocket Motor (고체추진기관의 $Al_2O_3$가 고무내열재에 미치는 영향을 평가하는 시험방법 연구)

  • Lee, Hyung-Sik;Kang, Yoon-Goo;Lim, Soo-Yong;Oh, Jong-Yun;Lee, Kyung-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.9-14
    • /
    • 2011
  • In solid propellant rocket motors, $Al_2O_3$, one of combustion products, can be accumulated inside a combustion chamber. A special rocket motor was designed and tested to simulate thermal reaction of rubber insulator affected by the deposited slag. We successfully demonstrated through a dynamic radioscopy that the slag was deposited at the location as designed. In this paper we present a new test method which can simulate a high temperature and pressure environment in combustion chamber to evaluate material characteristics of rubber insulator and can provide design data to decide its thickness for a new solid rocket motor. The solid rocket motor, which has an average chamber pressure of 770 psia and a burning time of 50 seconds, was tested. The results show that erosion of EPDM insulator is more affected by a gas velocity rather than by the thermal reaction of slag with a high thermal capacity.

Damping of a taut cable with two attached high damping rubber dampers

  • Cu, Viet Hung;Han, Bing;Wang, Fang
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1261-1278
    • /
    • 2015
  • Due to their low intrinsic damping, stay cables in cable-stayed bridges have often exhibited unanticipated and excessive vibrations which result in increasing maintenance frequency and disruption to normal operations of the entire bridges. Mitigation of undesired cable vibration can be achieved by attaching an external damping device near the anchorage. High Damping Rubber (HDR) dampers have many advantages such as compact size, better aesthetics, easy maintenance, temperature stability, and cost benefits; therefore, they have been widely used to increase cable damping. Although a single damper has been shown to reduce cable vibrations, it is not the most effective method due to geometric constraints. This paper proposes the use of two HDR dampers to improve effectiveness and robustness in suppressing cable vibration. Oscillation parameters of the cable-dampers system were investigated in detail by modeling the stay cable as a taut string and each HDR damper as complex-valued impedance and by using an analytical formulation of the complex eigenvalue problem. The problem of two HDR dampers arbitrarily located along a cable is solved and the solution is discussed. Asymptotic formulas to calculate the damping ratios of the cable with two HDR dampers installed near the anchorage(s) are proposed and compared with the exact solutions. Further, a design example is presented in order to justify the methodology. The results of this study show that when the two HDR dampers are installed close to each other on the same end of the cable, some interaction between the dampers leads to reduced damping ratio. When the dampers are on the opposite ends of the cable, they are effective in increasing damping ratio and can provide better vibration reduction to multiple modes.