• Title/Summary/Keyword: High-temperature compression test

Search Result 136, Processing Time 0.023 seconds

Fatigue Characteristics of Engine Rubber Mount for Automotive (자동차용 엔진 마운트의 피로거동에 관한 연구)

  • Suh, Chang-Min;Oh, Sang-Yeob;Park, Dae-Kyu;Jang, Ju-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.45-53
    • /
    • 2009
  • In this study, Finite Element Analysis (FEA) was used to decide three kinds of material property of vibration proof rubber with the unique characteristic of non-linear and large deformation. As well, three types of hardness (Hs 50, 55, 60) were compared with the result of fatigue tests, fatigue life was able to be predicted. The request for fatigue life becomes strict more and more as increasing stress under conditions like a compaction, high load and high temperature for parts because it is main characteristics of rubber mount for automotive. Regarding to the fatigue life under dynamic deformation condition, it can be predicted as checking forced deformation extends and its frequency and its strain-life curve. As for material property tests of uniaxial tension test, uniaxial compression test, pure shear test, Ogden model was used for FEA by observing relations between stress and strain's rate as curve fitting. As a result of FEA, fatigue life for rubber mount was predicted and accorded well with the experimental data of fatigue test with hourglass specimens. In addition, its property of the predictable fatigue life method suggested in this study was accorded well with the experimental data by comparing the predicted fatigue life of FEA with the result of fatigue test for rubber component of engine rubber mount.

Properties of High Power Flip Chip LED Package with Bonding Materials (접합 소재에 따른 고출력 플립칩 LED 패키지 특성 연구)

  • Lee, Tae-Young;Kim, Mi-Song;Ko, Eun-Soo;Choi, Jong-Hyun;Jang, Myoung-Gi;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Flip chip bonded LED packages possess lower thermal resistance than wire bonded LED packages because of short thermal path. In this study, thermal and bonding properties of flip chip bonded high brightness LED were evaluated for Au-Sn thermo-compression bonded LEDs and Sn-Ag-Cu reflow bonded LEDs. For the Au-Sn thermo-compression bonding, bonding pressure and bonding temperature were 50 N and 300oC, respectively. For the SAC solder reflow bonding, peak temperature was $255^{\circ}C$ for 30 sec. The shear strength of the Au-Sn thermo-compression joint was $3508.5gf/mm^2$ and that of the SAC reflow joint was 5798.5 gf/mm. After the shear test, the fracture occurred at the isolation layer in the LED chip for both Au-Sn and SAC joints. Thermal resistance of Au-Sn sample was lower than that of SAC bonded sample due to the void formation in the SAC solder.

Comparison Study of Prediction Models for Hot Deformation Behavior of Tool Steel (공구강의 고온 변형 거동 예측을 위한 모델 비교 연구)

  • Kim, Keunhak;Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.180-186
    • /
    • 2018
  • High temperature flow behaviors of Fe-Cr-Mo-V-W-C tool steel were investigated using isothermal compression tests on a Gleeble simulator. The compressive test temperature was varied from 850 to $1,150^{\circ}C$ with the strain rate ranges of 0.05 and $10s^{-1}$. The maximum height reduction was 45%. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrhenius-typed equation with the Zener-Hollomon parameter was proposed to simulate the hot deformation behavior of Fe-Cr-Mo-V-W-C steel. An artificial neural network (ANN) model was also developed to compare with the constitutive model. It was concluded that the ANN model showed more accurate prediction compared with the constitutive model for describing the hot compressive behavior of Fe-Cr-Mo-V-W-C steel.

Mechanical and Thermal Characteristics of Polyurethane Foam with Two Different Reinforcements and the Effects of Ultrasonic Dispersion in Manufacturing (이종 강화재를 첨가한 폴리우레탄 폼의 기계적 및 열적 특성과 제작 시 초음파 분산의 영향)

  • Kim, Jin-Yeon;Kim, Jeong-Dae;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.515-522
    • /
    • 2019
  • Since Liquefied Natural Gas (LNG) is normally carried at 1.1 bar pressure and at -163℃, special Cargo Containment System (CCS) are used. As LNG carrier is becoming larger, typical LNG insulation systems adopt a method to increase the thickness of insulation panel to reduce sloshing load and Boil-off Rate (BOR). However, this will decrease LNG cargo volume and increase insulation material costs. In this paper, silica aerogel, glass bubble were synthesized in polyurethane foam to increase volumetric efficiency by improving mechanical and thermal performance of insulation. In order to increase dispersibility of particles, ultrasonic dispersion was used. Dynamic impact test, quasi-static compression test at room temperature (20℃) and cryogenic temperature (-163℃) was evaluated. To evaluate the thermal performance, the thermal conductivity at room temperature (20℃) was measured. As a result, specimens without ultrasonic dispersion have a little effect on strength under the compressive load, although they show high mechanical performance under the impact load. In contrast, specimens with ultrasonic dispersion have significantly increased impact strength and compressive strength. Recently, as the density of Polyurethane foam (PUF) has been increasing, these results can be a method for improving the mechanical and thermal performance of insulation panel.

The Effect of Hydrogen Added into In-let Air on Industrial Diesel Engine Performance (흡기중의 수소첨가가 산업용 디젤기관의 성능에 미치는 영향)

  • Park, Kweon-Ha;Lee, Jin-A;Lee, Wha-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1050-1056
    • /
    • 2010
  • Diesel engines introduce only air into the cylinder, and the air is high lycompressed. Fuel is directly injected into the combustion chamber in high temperature and pressure. Therefore diesel engines have high thermal efficiency because of the high compression ratio, while having high level of particulate matter and nitrogen oxide emissions because of the direct fuel injection. Many technologies have been developed to reduce particulate matter and nitrogen oxide emissions from diesel engines. One of the technologies is hydrogen fuel introduced into the combustion chamber with diesel fuel. In this thesis tiny amount of hydrogen is supplied into the combustion chamber in order to enhance the combustion performance. The engine, in which hydrogen is introduced, is tested. There are 20 test conditions given as 5 torque values of 100%, 75%, 50%, 25%, 0%, and 4 engine speeds of 700rpm, 1000rpm, 1500rpm and 2000rpm for the two cases with or without hydrogen addition. Maximum torques and Idle torques at each engine speed are measured, then the torque values are divided into 4 levels with 25% increasing step. The result shows that the fuel consumption, smoke, CO are reduced while the NOx emission is slightly increased, and the hydrogen addition has not a great effect on the performance at low loads but a great effect at a maximum load.

Development of Three Dimensional Fracture Strain Surface in Average Stress Triaxiaility and Average Normalized Lode Parameter Domain for Arctic High Tensile Steel: Part I Theoretical Background and Experimental Studies (극한지용 고장력강의 평균 응력 삼축비 및 평균 정규 로드 파라메터를 고려한 3차원 파단 변형률 평면 개발: 제1부 이론적 배경과 실험적 연구)

  • Chong, Joonmo;Park, Sung-Ju;Kim, Younghun
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.445-453
    • /
    • 2015
  • The stress triaxiality and lode angle are known to be most dominant fracture parameters in ductile materials. This paper proposes a three-dimensional failure strain surface for a ductile steel, called a low-temperature high-tensile steel (EH36), using average stress triaxiality and average normalized lode parameter, along with briefly introducing their theoretical background. It is an extension of previous works by Choung et al. (2011; 2012; 2014a; 2014b) and Choung and Nam (2013), in which a two-dimensional failure strain locus was presented. A series of tests for specially designed specimens that were expected to fail in the shear mode, shear-tension mode, and compression mode was conducted to develop a three-dimensional fracture surface covering wide ranges for the two parameters. This paper discusses the test procedures for three different tests in detail. The tensile force versus stroke data are presented as the results of these tests and will be used for the verification of numerical simulations and fracture identifications in Part II.

The friction effects at high strain rates of materials under dynamic compression loads (동압축 하중을 받는 재료의 고변형도율에서의 마찰영향)

  • 김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.454-464
    • /
    • 1987
  • The objective of this research is to analyze and evaluate the dynamic flow curve of metals under impact loading at both high strain rate (.epsilon.=1/h dh/dt > 10$\^$3/m/s/m) and large strain (.epsilon.=In h/h$\_$0/ > 1.0). A test method for dynamic compression of metal disc is described. The velocity of the striker face and the force on the anvil are measured during the impact period. From these primitive data the axial stress, strain, and strain rate of the disc are obtained. The Strain rate is determined by the striker velocity divided by the specimen height. This gives a slightly increasing strain rate over most of the deformation period. Strain rates of 100 to 10,000 per second are achieved. Attainable final strains are 150%. A discussion of several problem areas is presented. The friction on the specimen surfaces, the determination of the frictional coefficient, the influence of the specimen geometry (h$\_$0//d$\_$0/ ratio) on the friction effect, the lock-up condition for a given configuration, the friction correction factor, and the evaluation of several lubricants are given. The flow function(stress verus strain) is dependent on the material condition(e.g., prior cold work), specimen geometry, strain rate, and temperature.

Buckling of axially loaded shell structures made of stainless steel

  • Ozer Zeybek;Ali Ihsan Celik;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.681-691
    • /
    • 2023
  • Stainless steels are commonly employed in engineering applications since they have superior properties such as low maintenance cost, and high temperature and corrosion resistance. These features allow them to be preferred in cylindrical shell structures as well. The behavior of a cylindrical shell structure made of stainless steel can be quite different from that made of carbon steel, as the material properties differ from each other. This paper deals with buckling behavior of axially loaded cylindrical shells made of stainless-steel. For this purpose, a combined experimental and numerical study was carried out. The experimental study comprised of testing of 18 cylindrical specimens. Following the experimental study, a numerical study was first conducted to validate test results. The comparisons show that finite element models provide good agreement with test results. Then, a numerical parametric study consisting of 450 models was performed to develop more generalized design recommendations for axially compressed cylindrical shell structures made of stainless steel. A simple formula was proposed for the practical design purposes. In other words, buckling strength curve equation is developed for three different fabrication quality.

Evaluation of mechanical properties of KURT granite under simulated coupled condition of a geological repository (복합 처분환경 모사조건에서의 KURT 화강암의 역학적 물성 변화 평가)

  • Park, Seunghun;Kim, Jin-Seop;Kim, Geon Young;Kwon, Sangki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.501-518
    • /
    • 2019
  • The rock properties measured under in-situ geological condition can be used to increase the reliability in numerical simulations with regard to the long-term performance of a high-level waste repository. In this study, the change in mechanical properties of KURT (Korea atomic energy research institute Underground Research Tunnel) granite was evaluated under the simulated THM (Thermo-Hydro-Mechanical) coupled condition due to a deep geological formation in the disposal repository. The rock properties such as uniaxial compression strength, indirect tensile strength, elastic modulus and Poisson's ratio were measured under the coupled test conditions (M, HM, TM, THM). It was found that the mechanical properties of KURT granite is more susceptible to the change in saturation rather than temperature within the test condition of this study. The changes in uniaxial compression strength and indirect tensile strength from the rock samples of dried or saturated conditions showed the maximum relative error of about 20% and 13% respectively under the constant temperature condition. Therefore, it is necessary to use the material properties of rock measured under the coupled THM condition as input parameters for the numerical simulation of long-term performance assessment of a disposal repository

High temperature deformation characteristics ${YBa_2}{Cu_3}{O_{7-x}}$ superconductor (${YBa_2}{Cu_3}{O_{7-x}}$초전도체의 고온변형특성)

  • Kim, Byeong-Cheol;Jang, Ho-Jeong;Song, Jin-Tae
    • Korean Journal of Materials Research
    • /
    • v.4 no.7
    • /
    • pp.828-836
    • /
    • 1994
  • In order to investigate the high temperature deformation characteristics in YBaiCu307-, oxide superconductor, the compression test was performed at temperatures from $890^{\circ}C$ to $930^{\circ}C$ at initial strain rate between $1.0 x 10^{-5}s^{-1}\; and \; 1.0^{-4}s^{-1}$. As the temperature increased and the initial strain rate decreased, the flow stress decreased. The strain rate sensitivity exponent measured as 0.41-0.46, supporting occurence of a superplastic deformation. The activation energy for superplastic deformation was calculated as 500-580KJ/mol, which decreased with increasing Ag content. Microstructure of the superplastically-deformed specimens showed that a grain growth occurred during deformation, and it appeared to be considerable when Ag content increased, but most grains still remained equiaxed after deformation. In this study, the deformation mechanism of YBCO superconductor was the grain boundary sliding with the diffusional accommodation and the contribution of the gram boundary sliding to the total strain was estimated to be 65%.

  • PDF