• Title/Summary/Keyword: High-temperature High-pressure Vessel

Search Result 142, Processing Time 0.021 seconds

The Analysis of Pulse Wave Velocity of Jeju female divers (제주 해녀의 맥파전도속도 분석)

  • Lee, Han-Young
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.515-521
    • /
    • 2015
  • In this study, we tried to analyze arterial stiffness of Jeju female divers who diver into cold water without the assistance of oxygen. For this purpose we measured pulse wave velocity and ankle-brachial index of Jeju female divers and same aged females who didn't have any cardiovascular risk for comparing the vascular stiffness. The results were the following : First, the light-femoral pulse wave velocity of Jeju female divers was significantly lower than normal women of the same ages. Second, Jeju female divers's ABI showed higher tendency than normal same aged women. These result showed that Jeju female divers' body had been completed for adaptation to low temperature and high pressure water environment through a long-term immersion activities in old age, as well as due to higher physical activity levels of Jeju female divers peripheral vascular resistance was not reduced.

Numerical Simulation of CNTs Based Solid State Hydrogen Storage System (탄소나노튜브 기반의 고체수소저장시스템에 관한 전산해석)

  • Kim, Sang-Gon;HwangBo, Chi-Hyung;Yu, Chul Hee;Nahm, Kee-Suk;Im, Yeon-Ho
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.644-651
    • /
    • 2011
  • Storing hydrogen in solid state hydride is one of the best promising methods for the future hydrogen economy. The total performance of such systems depends on the rate at which the amount of mass and heat migration is supplied to solid hydride. Therefore, an accurate modeling of the heat and mass transfer is of prime importance in optimizing the design of such systems. In this work, Hydrogen storage in Pt-CNTs hydrogen reactor has been intensively investigated by solving 2 dimensional mathematical models. Using a CFD computer software, systematic studies have been performed to elucidate the effect of heat and mass transfer during hydrogen charging periods. It was revealed that the optimized design of hydrogen storage vessel can prevent the increase of system temperature and the charging time due to the convective cooling effects inside the vessels at even high charging pressure. Because none has reported the critical issues of heat and mass transfer for CNT based hydrogen storage system, this work can support the first insight of the optimal design for solid state hydrogen storage system based on CNT in the near future.