• Title/Summary/Keyword: High-strength concrete including silica

Search Result 14, Processing Time 0.021 seconds

Concrete mix design for service life of RC structures exposed to chloride attack

  • Kwon, Seung-Jun;Kim, Sang-Chel
    • Computers and Concrete
    • /
    • v.10 no.6
    • /
    • pp.587-607
    • /
    • 2012
  • The purpose of this research is to propose a design technique of concrete mix proportions satisfying service life through genetic algorithm (GA) and neural network (NN). For this, thirty mix proportions and the related diffusion coefficients in high performance concrete are analyzed and fitness function for diffusion coefficient is obtained considering mix components like w/b (water to binder ratio), cement content, mineral admixture (slag, flay ash and silica fume) content, sand and coarse aggregate content. Through averaging the results of 10 times GA simulations, relative errors to the previous data decrease lower than 5.0% and the simulated mix proportions are verified with the experimental results. Assuming the durability design parameters, intended diffusion coefficient for intended service life is derived and mix proportions satisfying the service life are obtained. Among the mix proportions, the most optimized case which satisfies required concrete strength and the lowest cost is selected through GA algorithm. The proposed technique would be improved with the enhancement of comprehensive data set including wider the range of diffusion coefficients.

Engineering Characteristics of Ultra High Strength Concrete with 100 MPa depending on Fine Aggregate Kinds and Mixing Methods (잔골재 종류 및 혼합방법 변화에 따른 100 MPa 급 초고강도 콘크리트의 공학적 특성)

  • Han, Min-Cheol;Lee, Hong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.536-544
    • /
    • 2016
  • Recently, with the increase in the number of high rise and huge scaled buildings, ultra-high strength concrete with 80~100 MPa has been used increasingly to withstand excessive loads. Among the components of concrete, the effects of the kinds and properties of fine aggregates on the performance and economic advantages of ultra-high strength concrete need to be evaluated carefully. Therefore, this study examined the effects of the type of fine aggregates and mixing methods on the engineering properties of ultra-high strength concrete by varying the fine aggregates including limestone fine aggregate (LFA), electrical arc slag fine aggregate (EFA), washed sea sand (SFA), and granite fine aggregate (GFA) and their mixtures. Ultra-high strength concrete was fabricated with a 20 % water to binder ratio (W/B) and incorporated with 70 % of Ordinary Portland cement: 20 % of fly ash:10 % silica fume. The test results indicate that for a given superplasticizer dose, the use of LFA resulted in increases in slump flow and L-flow compared to the mixtures using other aggregates due to the improved particle shape and grading of LFA. In addition, the use of LFA and EFA led to enhanced compressive strength and a decrease in autogenous shrinkage due to the improved elastic properties of LFA and the presence of free-CaO in EFA, which resulted in the formation of C-S-H.

Thermal and Mechanical Properties of Alumina Cementitious Composite Materials (알루미나 시멘트에 기반한 복합재료의 열역학적 특성)

  • Yang, In-Hwan;Lee, Jung-Hwan;Choi, Young-Cheol
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.199-205
    • /
    • 2015
  • The mechanical and thermal properties of high temperature aluminate cementitious thermal storage materials were investigated in this paper. Alumina cement was used as basic binder and the effect of the replacement of fly ash, silica fume, calcium sulfo-aluminate and graphite for alumina cement was investigated. Experiments were performed to measure mechanical properties including compressive strength before and after thermal cycling, and split tensile strength, and to measure thermal properties including thermal conductivity and specific heat. Test results show that the residual compressive strengths of mixtures with alumina cement only, or alumina cement and silica fume were greater than those of the others. Additionally, the specific heat of mixture with graphite was largest in all the mixtures used in the study. The results of this study could be used to provide realistic information for material properties in thermal energy storage concrete in the future.

Evaluation of Durability Characteristics of High Performance Shotcrete Using Fly Ash (폐석탄회를 이용한 고성능 숏크리트의 내구특성 평가)

  • Park, Cheol-Woo;Lee, Hyeon-Gi;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.305-311
    • /
    • 2010
  • The industrial by-product market has increased at a geometric rate worldwide with the rapid economic growth. At present time, conventional disposal methods of industrial by-products in Korea including landfill, incineration and storage already have reached their limits. In this study, the industrial by-products such as fly ash and silicafume were used as mineral admixtures, which are commonly added to concrete mix to inhance the economic efficiency, long-term strength and durability of concrete, to determine the optimized mix proportion of high performance shotcrete. Through the series of tests (compressive strength test, accelerated chloride ion penetration test, measurement of chloride diffusion coefficient). The results of the study showed that the proposed mix proportions satisfied the requirements of domestic as well as international guidelines for shotcrete, with a higher durability than the existing shotcrete.