• 제목/요약/키워드: High-strength

Search Result 13,482, Processing Time 0.039 seconds

An experimental study on the fragility factor of high strength concrete (고강도 콘크리트의 취도계수에 관한 실험적 연구)

  • Kim, Hui-Doo;Yang, Seong-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.148-149
    • /
    • 2014
  • In modern society, population overcrowding and concentration of facilities are happened because of the concentration on to city. So this phenomenon demands improvement of material's performance, technical development of structure analysis and design and improvement of constructing ability .High strength concrete has some merits. High strengthening makes the cross section reduced, and that cause decrease of structure weight. And using high durable and superplasticizer promote liquidity, thus high quality concrete can be produced. Because of these advantages, this study is for showing validity of using it by compression/tensile strength experiment. As this experiment's result, when concrete become stronger, interface intensity coefficient between cement and aggregate is different and they don't adhere to each other. So there is brittle failure. Fragility factor also steadily increase with strong concrete, it tells high strength concrete has problem. Therefore the sources used in high strength concrete like cement and aggregate must have great quality. So the source's performance must be supervised well because their quality decides performance criteria.

  • PDF

An Experimental Stud on The Quality Improvement of High Strength Concrete using Mineral Admixtures (혼화재를 사용한 고강도콘크리트의 품질개선에 관한 실험적 연구)

  • 류영호;박정국;이보근;박칠림
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.79-88
    • /
    • 1993
  • The purpose of this study is to provide a firm base for the quality improvement of high strength concrete and the development of ultra high strength concrete as well as enviromental con-servation and utilization of byproducts from industrial processing such as Fly ash and Silica fume. A comprehensive experimental study was performed to investigate the effects on the quality improvement of high strength concrete using mineral admixtures. As results, 400~500kg/$\textrm{cm}^2$ compressive strength and excellent flowability can be obtained if fly ash is replaced with cement in the range of 305. In case of using powder type silica fume, 600~700 kg/$\textrm{cm}^2$ compressive strength is showed and 600~800kg/$\textrm{cm}^2$ compressive strength cam be obtained with liquid type silica fume. But it is necessary to increase dosage of high range water reducer for flowability using powder type silica fume. Especially, higher strength concrete cam be obtained when maximum size of coarse aggregate is lower than 25mm.

  • PDF

Optimum PP Fiber Dosage for the Control of Spalling of High Strength Reinforced Concrete Columns

  • Yoo, Suk-Hyeong;Shin, Sung-Woo;Kim, In-Ki
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.2E
    • /
    • pp.103-109
    • /
    • 2006
  • Spalling is defined as damages to concrete exposed to high temperature during fire, causing cracks and localized bursting of small pieces of concrete. As the concrete strength increases, the degree of damage caused by spalling becomes more serious due to impaired permeability. It is reported that polypropylene(PP) fiber has an important role in protecting concrete from spalling, and the optimum dosage of PP fiber is 0.2%. However, this study was conducted on non-reinforced concrete specimens. The high-temperature behavior of high-strength reinforced concrete columns with various concrete strength and various quantity of PP fibers is investigated in this study. The results revealed that the ratio of unstressed residual strength of columns increased as the concrete strength increased and as the quantity of PP fiber increased from 0% to 0.2%. However, the effect of PP fiber quantity on residual strength of column was barely above 0.2%.

Experimental studies on composite beams with high-strength steel and concrete

  • Zhao, Huiling;Yuan, Yong
    • Steel and Composite Structures
    • /
    • v.10 no.5
    • /
    • pp.373-383
    • /
    • 2010
  • This paper presents the experimental studies of the flexural behavior of steel-concrete composite beams. Herein, steel-concrete composite beams were constructed with a welded steel I section beam and concrete slab with different material strength. Four simply supported composite beams subjected to two-point concentrated loads were tested and compared to investigate the effect of high strength engineering materials on the overall flexural response, including failure modes, load deflection behavior, strain response and interface slip. The experimental results show that the moment capacity of composite beams has been improved effectively when high-strength steel and concrete are used. Comparisons of the ultimate flexural strength of beams tested are then made with the calculated results according to the methods specified in guideline Eurocode 4. The ultimate flexural strength based on current codes may be slightly unconservative for predicating the moment capacity of composite beams with high-strength steel or concrete.

Influence of Ground Granulated Blast-Furnce Slag on Compressive Strength of Ultra-High Strength SFRCC (고로슬래그 미분말이 초고강도 SFRCC의 압축강도에 미치는 영향)

  • Park, Jung-Jun;Koh, Kyung-Taek;Ryu, Gum-Sung;Kang, Su-Tae;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.399-402
    • /
    • 2005
  • In ultra-high strength SFRCC(Steel Fiber Reinforced Cementious Composites), much silica fume are used to improve strength, flowability and durability. Silica fume have merits of filling the voids, enhancement of reheological chracteristics, production of secondary hydrates by pozzolanic reaction in reactive powder concretes. However silica fume has been imported in high-cost in domestic industry, we need to investigate replaceable material in stead of silica fume in a view of economy Therefore, in this paper, in order to investigate replacement of silica fume in ultra-high strength SFRCC we used the granulate blast-furnce slag with finess 4000, 6000, 8000. As a results, we have evaluated that the bigger the finess the more increase compressive strength of ultra-high strength SFRCC using the blast-furnce slag and there was no problem from the viewpoint of flowability and compressive strength when we use blast-furnce $50\%$ with replacement ratio of silica fume

  • PDF

Constitutive Modeling of Confined High Strength Concrete (고강도 철근콘크리트 기둥의 구성모델)

  • Kyoung Oh, Van;Hyun Do, Yun;Soo Young, Chung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.445-450
    • /
    • 2003
  • The moment-curvature envelope describes the changes in the flexural capacity with deformation during a nonlinear analysis. Therefore, the moment-curvature analysis for reinforced concrete columns, indicating the available flexural strength and ductility, can be conducted providing the stress-strain relation for the concrete and steel are known. The moments and curvatures associated with increasing flexural deformations of the column may be computed for various column axial loads by incrementing the curvature and satisfying the requirements of strain compatibility and equilibrium of forces. Clearly it is important to have accurate information concerning the complete stress-strain curve of confined high-strength concrete in order to conduct reliable moment-curvature analysis to assess the ductility available from high-strength columns. However, it is not easy to explicitly characterize the mechanical behavior of confined high-strength concrete because of various parameter values, such as the confinement type of rectilinear ties, the compressive strength of concrete, the volumetric ratio and strength of rectangular ties, etc. So a stress-strain confinement model is developed which can simulate a complete inelastic moment-curvature relations of a high-strength reinforced concrete column

  • PDF

Rapidly Solidified Powder Metallurgy Mg-Zn-RE Alloys with Long Period Order Structure

  • Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1269-1270
    • /
    • 2006
  • Mg-Zn-RE alloys had a novel lond period stacking ordered (LPO) structure. Their rapidly solidified powder metallurgy (RS P/M) alloys exhibited a combination of high strength and god ductility (tensile yield strength above 550 MPa and elongation above 5%). The LPO Mg-Zn-RE RS P/M alloys had high elevated temperature strength (tensile yield strength above 380 MPa at 473 K) and exhibited a high-strain-rate superplasticity at higher temperatures. In Japan, a national project for developing high strength LPO Mg-Zn-RE RS P/M alloys has started at 2003 for 5 years, which is founded by the Ministry of Economy, Trade and Industry (METI) of Japan. In the national project, project targets in materials performances have been achieved. The developed LPO Mg-Zn-RE RS P/M alloys exhibited higher tensile yield strength, fatigue strength and corrosion resistance than high strength aluminum alloys of extra-super-duralumin (7075-T6).

  • PDF

Shear Behavior of High-Strength Steel Reinforced Concrete Beams without Stirrups (고장력 주인장 철근을 사용한 전단보강이 없는 보의 전단성능에 관한 연구)

  • Shon, Young-Moo;Yoon, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.203-210
    • /
    • 2002
  • In these days, High-strength steel prevails throughout the construction fields for the benefit of structural and economical aspects. But high-strength steel is used by the simple calculation of flexural capacities for the purpose of reducing flexural reinforcement. So, this paper is mainly focused on the shear behavior of high-strength steel reinforced concrete beams without stirrups comparing with normal-strength steel reinforced concrete beams. Specimens were made and tested with the experimental parameters, such as steel yield strength, reinforcement ratios and minimum shear reinforcement. The main result was that not only area but also the yield strength of flexural reinforcement should be considered to predict the shear capacities of concrete beams. In addition, the experimental results were simulated by modified compression field theory analysis program, RESPONSE 2000. A good agreement was achieved between the test results and program analyses.

An Experimental Study on Workability for Practical Use of High Workable and Normal Strength Concrete (고슬럼프 보통강도 콘크리트의 실용화를 위한 시공특성에 관한 실험적 연구)

  • Jung, Yang-Hee;Kim, Yong-Ro;Lee, Do-Bum;Jang, Sun-Ken
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.107-110
    • /
    • 2006
  • The purpose of this study is to suggest a reference data for the development of high workable and normal strength concrete using Polycarboxylate superplasticizer and granulated blast furnace slag as concrete admixtures. So in this study, it is quantitatively evaluated the workability, compressive strength, the heat of hydration and dry shrinkage of high workable concrete on normal compressive strength($21{\sim}27MPa$) for the practical use in construction field. As a result of this study, it is appeared that the performance of high workable and normal strength concrete is superior than that of ready-mixed concrete of the same strength through the B/P tests in the plants.

  • PDF

Improvement of Properties in High Strength Concrete Using Fly ash and Gypsum (플라이 애시 및 석고를 활용한 고강도용 콘크리트의 성능개선)

  • 김기형;최재진;최연황
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.89-94
    • /
    • 1999
  • The workability of high strength concrete using high range water reducing admixture is varied rapidly according to elapsed time. For using the high strength concrete in situ, careful caution on workability is necessary. By using fly ash as a admixture, the slump loss of concrete can be reduced considerably, but the early strength of concrete used fly ash is smaller than that not used fly ash. For the purpose of elevating the utilization of fly ash on high strength concrete, the high fluidity retention and the strength development in early age are necessary in concrete used fly ash. In this study, to improve the fluidity retention and to acquire strength development on concrete used fly ash, the gypsum is applied.

  • PDF