• Title/Summary/Keyword: High-speed vehicle

Search Result 1,293, Processing Time 0.025 seconds

Fuel consumption effects of transportation improvement options using mesoscopic traffic simulator (메조모형 시뮬레이터를 이용한 교통운영방식의 연료소모량 분석)

  • 최기주;이건영;오세창
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.1
    • /
    • pp.19-38
    • /
    • 2002
  • To evaluate the effects of transportation system operation, usually measures of effectiveness(MOE) such as travel time, space mean speed, stop/delay ratio have been used. But, energy consumption as well as the existing MOE in transportation receives more attention as an alternative MOE in transportation operation. The purpose of this study is a development of procedure, which could measure the relative energy consumption for each alternative and compare the results. A mesoscopic simulator called INTEGRATION is used to evaluate the operation of high occupancy vehicle lane, signal optimization, lane expansion, and the application of ITS. Among those, the application of ITS shows the greatest effectiveness in energy reduction, and then lane expansion, signal optimization, and the operation of high occupancy vehicle lane in the order named. Because we don't consider the characteristics of vehicle class, Potential demand and the simulation time is just for an hour. it is recommended that a procedure for precise economic analysis and an improvement in methodology are needed in the future for the expanded application of this study.

A Study on Structural Design and Analysis for Composite Main Wing and Horizontal Tail of A Small Scale WIG Vehicle (경량화 복합재 위그선의 주익 및 수평 미익 구조 설계 및 해석에 관한 연구)

  • Kong, Chang-Duk;Park, Hyun-Bum;Kim, Ju-Il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.2
    • /
    • pp.149-156
    • /
    • 2007
  • The present study provides structural design and analysis of main wing and horizontal tail of a small scale WIG(Wing in Ground Effect) vehicle which has been developed as a part of the high speed maritime transportation system for the future of Korea. Weight saving as well as structural stability could be achieved by skin-spar with foam sandwich design and with wide application of carbon/epoxy composite material. A commercial FEM code, NASTRAN, was utilized to confirm the structural safety and stability through sequential design modifications to meet the final design goal. In addition, each wing and the fuselage were fastened together by eight insert bolts with high strength to accomodate easy assembling and disassembling as well as to guarantee a service life longer than 20 years.

Characteristic of Road Traffic Noise According to Road Vertical Alignment (도로 종단선형에 따른 도로교통 소음 특성 분석)

  • Moon, Hak Ryong;Han, Dae Cheol;Kang, Won Pyoung
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.95-105
    • /
    • 2013
  • PURPOSES: The purpose of this study is to research the influence of road traffic noise by road slope through the analysis of the field road traffic noise and determine consideration of road slope in the case of appling active noise cancellation. METHODS: This study measures vehicle's noise by the NCPX method at the three field sections such as uphill, downhill, and flatland. Total sound pressure and sound pressure level by the 1/3 octave band frequency are calculated through the raw field data. Total sound pressure level is compared by ANOVA test and T test statistically. The results obtained are compared in accordance with the road slope and the progress of the uphill section. RESULTS : The noise characteristic of early, medium, and last parts of uphill was found to be consistent when the vehicle was travelling uphill section. The result of statistical test, it was shown that total sound pressures are not different each other. According to the comparison by the geometry, sound pressure of the uphill section was higher than those of the flatland and downhill section in high frequency band. By the result of statistical test, total sound pressure are different according to geometry in the case of high vehicle speed. In the comparison result by road slope, each sound pressure level was found to be consistent in total frequency. However, total sound pressure proportionally increased according to road slope. CONCLUSIONS: It is found that the effect of road slope on noise generation was little in this experimental sites.

Energy and Air Quality Benefits of DCV with Wireless Sensor Network in Underground Parking Lots

  • Cho, Hong-Jae;Jeong, Jae-Weon
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 2014
  • This study measured and compared the variation of ventilation rate and fan energy consumption according to various control strategies after installing wireless sensor-based pilot ventilation system in order to verify the applicability of demand-controlled ventilation (DCV) strategy that was efficient ventilation control strategy for underground parking lot. The underground parking lot pilot ventilation system controlled the ventilation rate by directly or indirectly tracking the traffic load in real-time after sensing data, using vehicle detection sensors and carbon monoxide (CO) and carbon dioxide ($CO_2$) sensor. The ventilation system has operated for 9 hours per a day. It responded real-time data every 10 minutes, providing ventilation rate in conformance with the input traffic load or contaminant level at that time. A ventilation rate of pilot ventilation system can be controlled at 8 levels. The reason is that a ventilation unit consists of 8 high-speed nozzle jet fans. This study proposed vehicle detection sensor based demand-controlled ventilation (VDS-DCV) strategy that would accurately trace direct traffic load and CO sensor based demand-controlled ventilation (CO-DCV) strategy that would indirectly estimate traffic load through the concentration of contaminants. In order to apply DCV strategy based on real-time traffic load, the minimum required ventilation rate per a single vehicle was applied. It was derived through the design ventilation rate and total parking capacity in the underground parking lot. This is because current ventilation standard established per unit floor area or unit volume of the space made it difficult to apply DCV strategy according to the real-time variation of traffic load. According to the results in this study, two DCV strategies in the underground parking lot are considered to be a good alternative approach that satisfies both energy saving and healthy indoor environment in comparison with the conventional control strategies.

Implementation and Performance Evaluation of a Precision Localizing Device for Hyperloop Pods Driving at Ulta-High Speeds (초고속주행 하이퍼루프 포드의 정밀 위치측정 장치 구현 및 성능평가)

  • Ok, Min-Hwan;Choi, Su-Yong;Choe, Jae-Heon;Lee, Kwan-Sup
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.443-451
    • /
    • 2020
  • A futuristic locomotion system called Hyperloop is projected for driving at ulta-high speed, levitated in the tube. In hyperloop localization of pods on the linear synchronous motor is essential for pod driving. precision localization is required for acceleration and deceleration of pods driving at speed above 1,000km/h, and also required for adjusting the pod speed driving at this very-high speed to maintain inter-vehicle distance. In this work, a new scale of localization is challenged by modified laser surface velocimeter. In acceleration the speed of a virtual pod is calculated along its displacement measured by laser reflection. Under the requirement of precise localization of the pod driving at ultra-high speed, a displacement measurement device, which detects the difference in reflections from tiles passing by the pod, is developed and evaluated through performance test. Tests of pod speeds below 500km/h have showed exact localization results of the precision in centimeters, and tests of pod speeds above 500km/h have showed localization with very low error rates under 0.1%. For the measurement above 500km/h, future works would pursue the error rate converges to zero.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.

Effects on Tensile Strength of Base and Weld Metal of Ti-6Al-4V Alloy in Short Time Exposure to High Temperature (Ti-6Al-4V 합금의 단시간 고온 노출 시 모재 및 용접부의 인장강도 특성)

  • Chae, Byoung-Chan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.413-421
    • /
    • 2014
  • Since the structural temperature of a flight vehicle flying at high speed rises rapidly due to aerodynamic heating, it is necessary for optimum structural design to obtain proper material properties at high temperature by taking into account of its operational environment. For a special alloy, analysis data on strength change due to exposure time to high temperature are very limited, and most of them are for an exposure time longer than 30 minutes for long term operations. In this study, base and weld metal samples of Ti-6Al-4V alloy had been prepared and high temperature tensile tests with induction heating were performed, and then high temperature strength characteristics and strength recovery characteristics through cooling have been analyzed. Pre-tests to determine maximum heating rate were performed, and response characteristics for temperature control were confirmed. As a result, high temperature tensile strength appeared to be lower than that of room temperature, but it was higher than that of high temperature of 30 minite exposure listed in MMPDS. In strength recovery through cooling Ti-6Al-4V alloy has shown higher recovery rate compared with other alloys.

Analysis on Efficiency Characteristics of IPMSM for fuel Economy Improve of Electric Vehicle (전기자동차의 연비향상을 위한 매입형 영구자석 동기전동기의 효율특성 분석)

  • Kim, Jong-Hee;Kim, Ki-Chan;Lee, Dae-Dong
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2018
  • Electric motors for electric vehicles differ in efficiency characteristics depending on the operation modes, studies for evaluating high efficiency characteristics in low speed and high speed operation modes are very important. Therefore, it is necessary to design method that can change the high torque, high output density, and high efficiency characteristics of driving motors for electric vehicles. In this paper, the diameter ratio of stator and rotor for the interior permanent magnet synchronous motor is change of designed 0.62, 0.65, and 0.68, respectively, and the efficiency characteristics of the entire operation section, average efficiency characteristics of the city driving modes and express highway driving modes are analyzed. As a result of analyzing the efficiency characteristics of the entire operating section, it was confirmed that as the diameter ratio increases, the high efficiency section moves to the low speed and low torque section and the high efficiency section moves to the high speed and low torque neighborhood as the diameter ratio decreases. As a result of analyzing the average efficiency characteristics in the city driving modes and express highway driving modes, the average efficiency of 0.68 model is analyzed to be more efficient than the 0.63 and 0.65 model ratio, and it is confirmed that it is suitable for city driving modes and express highway driving modes.

Development of HST electronic control system for combine (II)- Outdoor tests for control Characteristics - (콤바인 HST 전자제어시스템 개발- 제어특성 실외시험 -)

  • Seo, Sin-Won;Huh, Yun-Kun;Lee, Je-Yong;Lee, Chang-Kyu;Bae, Keun-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.121-128
    • /
    • 2011
  • I/An electro-hydraulic transmission having advantages of convenience, safety, simple linking and high power, and an electronic control system were designed and fabricated. In this study, characteristics of the control system were investigated through outdoor tests for evaluation of installation of the system on a combine. Major findings were as followings. 1. Experiment for performance evaluation of the control system was conducted on concrete road. With steering lever in neutral position, driving HST swash plate and left/right wheel speed increased in proportion to driving lever angle. In case of steering control, steering swash plate angle changed in proportion to steering lever angle. This should cause increase in outer wheel speed, but it was observed that HST swash plate was controlled toward neutral to maintain the speed before steering. As a result, speed before steering was maintained despite the change in outer wheel speed by steering HST swash plate angle change. 2. It was observed that the HST system enabled steering with outer wheel maintained at constant speeds while inner wheel speed decreased, which was more stable than conventional mechanical links. In addition, for the selected 5 criteria, experiment showed satisfactory results and it was judged that installation on real vehicle would be feasible. 3. The control system showed response property of appropriate forward/reverse movement and lift/right steering, without causing any problems during experiment on concrete. Result of response property experiment on field operation also showed appropriate control over forward/reverse movement and left/right steering.

Characteristics of the Rollover Critical Speed of a Trailer Equipped with a Tilting System (틸팅 시스템을 장착한 트레일러의 전복임계속도 특성)

  • Jeong, Tae-Gun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.64-70
    • /
    • 2018
  • Rollover is a major concern for vehicles with a higher center of gravity and for improving driving performance. This study investigates a tilting system to prevent rollover, which was successfully implemented for high-speed trains. It may be useful to apply the concept of the tilting system to a large truck such as a trailer. Even a small adjustment in the tilting angle can improve the driving stability during a steep turn. The equation of motion was derived from a dynamic model of the trailer with the tilting system. The balance of the centrifugal force and normal force determines the rollover critical speed for a given radius of the turn and load. To obtain a more conservative criterion, the rollover critical state was defined as the instant when any side wheel loses contact with the road. To actuate the tilting system, the optimal tilting angle must be calculated from the steering angle and the vehicle speed. Using a simplified model of a large truck, the effects of the tilting angle and load on the rollover critical speed were investigated.