• Title/Summary/Keyword: High-speed vehicle

Search Result 1,302, Processing Time 0.025 seconds

Modal and Stress Analysis of Spur Gear in DC Motor Gearhead using Finite Element Model

  • Pratama, Pandu Sandi;Supeno, Destiani;Jeong, Seongwon;Park, Cunsook;Woo, Jihee;Lee, Eunsook;Yoon, Woojin;Choi, Wonsik
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.17-17
    • /
    • 2017
  • In electric agricultural machine the gearhead is needed to convert the high speed low torque rotation motion generated by DC motor to lower speed high torque motion used by the vehicle. The gearhead consist of several spur gears works as reduction gears. Spur gear have straight tooth and are parallel to the axis of the wheel. Spur gears are the most easily visualized gears that transmit motion between two parallel shafts and easy to produce. The modeling and simulation of spur gears in DC motor gearhead is important to predict the actual motion behavior. A pair of spur gear tooth in action is generally subjected to two types of cyclic stress: contact stress and bending stress including bending fatigue. The stress may not attain their maximum values at the same point of contact fatigue. These types of failure can be minimized by analysis of the problem during the design stage and creating proper tooth surface profile with proper manufacturing methods. To improve its life expectation in this study modal and stress analysis of gearhead is simulated using ansys work bench software based on finite element method (FEM). The modal analysis was done to understand gearhead deformation behaviour when vibration occurs. FEM static stress analysis is also simulated on gearhead to simulate the gear teeth bending stress and contact stress behavior. This methodology serves as an approach for gearhead design evaluation, and the study of gear stress behavior in DC motor gearhead which is needed in the small workshop scale industries.

  • PDF

Analysis of Flux Weakening Operating Regions for a PM Synchronous Motor in HEV by considering Back EMF Harmonics (HEV용 영구자석동기전동기의 유기전압 고조파를 고려한 약자속 운전 영역해석)

  • Cho, Kwan-Yuhl;Woo, Byung-Guk;Kim, Gyoung-Man;Kang, Chan-Ho;Shin, Hee-Keun;Yoon, Byung-Chul;Park, Min-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.152-161
    • /
    • 2011
  • An interior permanent magnet synchronous motor(IPMSM) has been applied to the electric vehicle due to its high efficiency, compact volume, and wide operating speed ranges. This paper presents the analysis of the flux weakening operating regions at high speeds for the IPMSM that has back emf harmonics. The effect of the back emf harmonics on the motor speed and the maximum torque is analyzed. Also the dq currents for maximum torque operation under the voltage and the current limit conditions are analyzed. The conventional analysis and the presented analysis for the flux weakening operating regions are compared and the maximum torque - speeds characteristics for both analysis are verified through the experiment.

Sound-Insulation Design of Aluminum Extruded Panel in Next-Generation High-Speed Train (차세대 고속철도 차량용 알루미늄 압출재의 차음 설계)

  • Kim, Seock-Hyun;Seo, Tae-Gun;Kim, Jeong-Tae;Song, Dal-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.567-574
    • /
    • 2011
  • Aluminum extruded panels are widely used instead of corrugated steel panels for weight reduction in high-speed trains. Of the layers in the train body, it makes the largest contribution to the sound insulation. However, compared with that of a flat panel with the same weight, the TL of the aluminum extruded panel is remarkably lower in the local resonance frequency band. We study aluminum extruded panels for next-generation 400-km/h trains. We investigate the problem of sound insulation and propose a practical method to improve the sound-insulation performance. The local resonance frequency region is increased by a modification of the core structure, and urethane foam is placed in the core. The effect on the sound insulation is verified by experiments. Finally, the improvement for the entire sound-transmission loss is estimated for the layered floor panels of express trains.

Assessment on the Possibility of Increase of SB5-B Small Car Impact Velocity (SB5-B 소형차 충돌속도의 상향 가능성 평가)

  • Kim, Kee-Dong;Ko, Man-Gi;Joo, Jae-Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3013-3022
    • /
    • 2013
  • Satisfying the large car impact condition of the high level SB5-B for "SMART Highway" longitudinal barriers, the possibility of increase of the small car impact velocity from 120km/h to 130km/h was investigated. Through computer simulation using input parameters calibrated to full-scale crash test results, various longitudinal semi-rigid barrier models were improved such that for the small car impact speed of 120km/h the change of longitudinal and transverse velocities of the impact vehicle can satisfy the THIV limit. The barrier model determined through this process satisfied the performance assessment criteria for SB5-B impact conditions. Varying the wing angle of slip block-outs of the passed barrier model, the possibility of increase of the small car impact velocity was investigated by FEA and a full-scale crash test was conducted. It has been shown that the possibility to increase the small car impact speed to 130km/h is high if the test facility condition for 130km/h impact velocity is better equipped.

HYBRID LIGHT DUTY VEHICLES EVALUATION PROGRAM

  • Trigui, R.;Badin, F.;Jeanneret, B.;Harel, F.;Coquery, G.;Lallemand, R.;Ousten, JP.;Castagne, M.;Debest, M.;Gittard, E.;Vangraefshepe, F.;Morel, V.;Baghli, L.;Rezzoug, A.;Labbe, J.;Biscalia, S.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.65-75
    • /
    • 2003
  • A HEV evaluation program, funded by ADEME, was carried out by a group of Laboratories of different specialties in order to evaluate and compare consumption, emission and component technologies of the three first HEVs put on the market (Toyota Prius, Nissan Tino and Honda Insight). This paper presents the results obtained until now. These results show good consumption and emission performance of the tested vehicles compared to conventional ones. The energy management seems to be globally the same for the three vehicles excepting for cold stans where the Insight allows a very earlier stop of the engine compared to the Tino and especially to the Prius. A mapping of the engine consumption of the Prius and the Insight was performed in order to furnish data for the simulation models. The Permanent Magnet motors of the Prius and Tino have different number of pair poles and then different emf at a given speed. The low emf values of the Prius allow operation at high speed with less field weakening control than for the Tino. The inverters of the Prius and the Tino, controlled by a PWM at respectively 5 kHz and 7 kHz switching frequency, are made of IGBTs with high commutation performances.

Development of Fast Side-impact Sensing Algorithm (고속 측면 충돌 감지 알고리즘의 개발)

  • 박서욱;김현태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.163-170
    • /
    • 2000
  • Accident statistics shows that the portion of fatal occupant injuries due to side impacts is considerably high. The side impact usually leads to a severe intrusion of side structure into the passenger compartment. Furthermore, the safety zone for the side impact is relatively small compared to the front impact. Those kinds of physics for side impact frequently result in a fatal injury for the occupant. Therefore, NHTSA and EEVC are trying to intensify the regulation for the occupant protection against side impact. Both the regulation and recent market trends are asking for an installation of side airbag. There are several types of system configuration for side impact sensing. In this paper, we adopt the acceleration-based remote sensing method for the side airbag control system. We mainly focus on the development of hardware and crash discrimination algorithm of remote sensing unit. The crash discrimination algorithm needs fast decision of airbag firing especially for high-speed side impact such as FMVSS 214 and EEVC tests. It is also required to distinguish between low-speed fire and no-fire events. The algorithm should have a sufficient safety margin against any misuse situation such as hammer blow, door slam, etc. This paper introduces several firing criteria such as acceleration. velocity and energy criteria that use physical value proportional to crash severity. We have made a simulation program by using Matlab/Simulink to implement the proposed algorithm. We have conducted an algorithm calibration by using real crash data for 2,500cc vehicle. The crash performance obtained by the simulation was verified through a pulse injection method. It turned out that the results satisfied the system requirements well.

  • PDF

Numerical and Experimental Study on the Aerodynamic Characteristics of FAST Fuselages (FAST 동체의 공력특성에 대한 수치 및 실험 연구)

  • Han, Cheol-Heui;Cho, Jeung-Bo;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.177-182
    • /
    • 2007
  • The effects of three fuselage head shapes and nonplanar ground surface on the aerodynamic characteristics of FAST fuselages are investigated using a boundary element method. Wind tunnel test is also performed to validate the present method and to identify the wall effect on the frictional drag which cannot be analyzed using the present method. It is found that the channel has an effect of increasing the lift of those investigated fuselages. The optimal head shape depends on the design conditions of the FAST and its guideway channel. Comparing the calculated induced drag with the measured total drag, it can be concluded that the profile drag is independent of the ground height. Thus, the present numerical method can be applied to the conceptual design of the high-speed ground transporters if only the profile drag of the vehicle in free flight is assumed to be known.

Velocity Control Method of AGV for Heavy Material Transport (중량물 운송을 위한 AGV의 주행 제어 방법)

  • Woo, Seung-Beom;Jung, Kyung-Hoon;Kim, Jung-Min;Park, Jung-Je;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.394-399
    • /
    • 2010
  • This paper presents to study the velocity control method of AGV for heavy material transport. Generally, in the industries, fork-type AGV using path tracking requires high stop-precision with performing operations for 20 hours. To obtain the high stop-precision of AGV for heavy material transport, AGV requires driving technic during low speed. Hence, we use encoder with keeping the speed of AGV and study the velocity control method to improve for the stop-precision of AGV. To experiment the proposed the velocity control method, we performed the experiments engaging the pallet located 4m in front of the AGV. In the experimental result, the maximum error of stop-precision was less than 18.64mm, and we verified that the proposed method is able to control stable.

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.

Design Verification of an E-driving System of a 44 kW-class Electric Tractor using Agricultural Workload Data (농작업 부하데이터를 활용한 44 kW급 전기구동 트랙터의 E-driving 시스템 설계 검증)

  • Baek, Seung-Yun;Baek, Seung-Min;Jeon, Hyeon-Ho;Lee, Jun-Ho;Kim, Wan-Soo;Kim, Yong-Joo
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.36-45
    • /
    • 2022
  • The aim of this study was to verify an E-driving system of a 44 kW-class electric tractor using agricultural workload data. Workload data were acquired during field test (plow tillage, rotary tillage, loader operation, field driving, asphalt driving) using a conventional tractor with a load measurement system. These workload data were converted to data of a 44 kW-class tractor based on the load factor of the engine. These data were used to verify the design of the E-driving system of an electric tractor. High-load operations such as plow tillage, rotary tillage, and loader operation could be performed at stage L and stage M. High-speed operation (asphalt driving) could be effectively performed at stage H using a rated rotational speed of the motor. As a result, the E-driving system of the electric tractor was possible to perform all major agricultural operations according to gear stages of range shift. Based on results of this research, we plan to develop an electric tractor equipped with an E-driving system and conduct research on actual vehicle verification in the future.