• 제목/요약/키워드: High-speed spindle bearing

검색결과 151건 처리시간 0.027초

오일-제트 윤활 방식의 모터 분리형 초고속 주축계의 열 특성 해석 (Thermal Characteristics Analysis of a High-Speed Motor-Separated Spindle System Using Oil-Jet Lubrication Method)

  • 김석일;김기태
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.69-75
    • /
    • 2004
  • This paper presents the thermal characteristics analysis of a high-speed motor-separated spindle system consisted of angular contact ball bearings and built-in motor with oil-jet lubrication. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

영향계수법을 이용한 고속 스핀들의 밸런싱에 관한 연구 (A Study on Balancing of High Speed Spindle using Influence Coefficient Method)

  • 구자함;김인환;허남수
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.104-110
    • /
    • 2012
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. A high-speed spindle can be very sensitive to rotating mass unbalance which has harmful effect on many machine tools. Therefore, the balancing procedure to reduce vibration in rotating system is certainly needed for all high-speed spindles. So, it was performed with a spindle-bearing system for CNC automatic lathe by using numerical procedure. The spindle is supported by the angular contact ball bearings and the motor rotor is fixed at the middle of spindle. The spindle-bearing system has been investigated using combined methodologies of finite elements and transfer matrices. The balancing was performed through influence coefficient method and the comparison was made by whirl responses between before balancing and after balancing. As a result, balancing of simple spindle model reduced whirl orbit magnitude in case of a completely assembled spindle model.

16 극의 반경방향 전자석을 갖는 자기부상 주축계 연구 (A Study on the Magnetically Suspended Spindle with 16-pole Radial Magnets)

  • 박종권;노승국;경진호
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.203-212
    • /
    • 2002
  • Active magnetic hearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting. This paper describes a design and test of an active magnetic bearing system with 16-pole radial magnets. The spindle is originally designed for a CNC lathe and driven by outer motor with 5.5 kW power and maximum speed 10,000 rpm. Considering static load condition and geometric restrictions, radial magnet is designed 16-pole type for smaller outer diameter of the spindle system. Dynamic system characteristics such as natural frequency, critical speed, stiffness, damping and system stabilities are simulated with a rigid rotor model including direct feedback controller. The designed spindle system is realized with digital PIDD controller to compensate phase lag of PWM amplifier and magnet coils. With levitation and step response experiment the control system characteristics are tested, and the spindle is rotated up to 10,000 rpm stab1y.

고속 앵귤러 컨택트 볼 베어링의 온도특성 (Temperature Characteristics of High Speed Angular Contact Ball Bearing)

  • 현준수;박태조
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.96-101
    • /
    • 2001
  • This paper shows the temperature characteristics of a high speed angular contact ball gearing which is 7004C type with ISO P2 tolerance class. A built-in motor type high speed spindle which adopts an oil-air lubrication system was used to measure the temperature rise up to 60,000rpm. The gearing temperature was measured using thermocouples that were attached to the outside surfaces of the outer rings. The result showed that the continuous test method which was suggested in this paper is more effective than on and off method and the lubrication oil supply rate should be reduced in high speed rolling bearings as long as the seizure does not occur. And the result were confirmed that the bearings packed with ceramic balls are superior to those with steel balls in temperature characteristics.

  • PDF

고속 주축에 있어서의 예압력 변화가 회전정도에 미치는 영향 (Effect of Preload on Running Accuracy of High Speed Spindle)

  • 송창규;신영재
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.65-70
    • /
    • 2002
  • The rotational performance off machine tool spindle has a direct influence upon the surface finish of the finished workpiece. This running accuracy of the spindle is improved by increasing preload on the bearings, while it results in higher temperature rise and larger thermal deformation. Therefore, finding the optimal preload condition for high speed spindle is very important factors in spindle motion. in spindle motion. In this study, the effect of the preload on the roundness accuracy has been examined at the different cutting conditions. Experiments were carried out to investigate the effects of the bearing preload on the running accuracy of high speed spindle which was supported by two angular contact bearings.

공기 정압 베어링에서 열의 영향에 따른 베어링 특성에 관한 연구 (A Study on the Bearing Characteristics of Air Bearing System According to the Thermal Effects)

  • 이종렬;김보언;안지훈;이득우
    • Tribology and Lubricants
    • /
    • 제17권1호
    • /
    • pp.10-15
    • /
    • 2001
  • Generally, it is said that the heat generation of air bearing is negligible. But the air bearing using at the built-in spindle is different from the general air bearing itself because of the thermal effects from the spindle motor and high-speed conditions. In this paper, in order to analysis the characteristics of air bearing by the heat, We made easy -heating-bearing-system (EHBS) and hard-heating-bearing-system (HHBS) and could identify the changes between the two bearing systems from the experiments and simulation. When spindle system reached at thermal steady-state, the changes means that the stiffness of air bearing becomes change due to the clearance change between bearing and journal. It is shown that the temperature rise and thermal effects to cause the thormal expansions have to be considered when designing air spindle system.

공기 베어링 스핀들을 애용한 PCB 드릴링에 관한 연구 (A Study on the PCB(Printed Circuit Board) Drilling by Air Bearing Spindle)

  • 배명일;김상진;김기수
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.15-20
    • /
    • 2005
  • This paper describes the PCB drilling using an ultra high-speed air bearing spindle system and micro drill. For this research, we have developed the ultra high-speed air bearing spindle of 125,000 rpm and made an experiment for the application possibility in the PCB drilling. In order to estimate the drilling performance, we have investigated the size and damage of drilled hole, and the wear of drill at 90,000rpm. Results are as follows; we have confirmed the possibility in the PCB drilling of air bearing spindle. In case of micro-drilling PCB at $0.1mm\sim0.3mm$, the increase in the number of drilling has resulted in a bigger size of holes and also a bigger size of damage. It has been found that the wear of micro drill tends to concentrate in the main cutting edge.

경방향 하중을 받는 스핀들 베어링 계의 동특성 연구 (Study on Dynamic Characteristics of Spindle-bearing System Subjected to Radial Load)

  • 최춘석;홍성욱
    • 한국생산제조학회지
    • /
    • 제22권4호
    • /
    • pp.740-746
    • /
    • 2013
  • Angular contact ball bearings are often adopted for a high-speed spindle owing to their durability against axial and radial loads. The dynamic characteristics of an angular contact ball bearing, however, are very complicated because they are dependent on the applied loads as well as on the system configuration. This study systematically analyzes the radial-load-dependent characteristics of spindles as well as angular contact ball bearings. Toward this end, a spindle dynamic model along with the bearing dynamics model is established. An iterative solution algorithm is implemented to resolve the statically indeterminate problem associated with spindle-bearing systems subjected to radial load. Two numerical examples are provided to investigate the spindle and bearing characteristics as a function of radial load with regard to the system configuration.

고속스핀들의 고무압을 이용한 가변예압장치 실용화를 위한 기초연구 (A Basic Study on the Application of a Variable Preload Device using Rubber Pressure for High Speed Spindle Systems)

  • 최치혁;심민섭;이춘만
    • 한국정밀공학회지
    • /
    • 제31권8호
    • /
    • pp.677-682
    • /
    • 2014
  • One of the most important element technologies for achieving high-precision in machine tool spindle systems is preload technology for the bearing of spindle systems. Fixed position preload, constant pressure preload, conversion preload and variable preload methods have been applied for the spindle systems. In this study, a new variable preload method using centrifugal force and rubber pressure is used for reducing installation costs through simplifying its structure. The main objective of the work is the verification of the operability in a preload device using the rubber pressure by the finite element analysis. It is shown that the variable preload device proposed in this study is applicable to high speed machine tool spindles.

DETECTING AND CORRECTING UNBALANCE IN TOOLHOLDERS

  • Layne, Michael H.
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 Handout for 2000 Inter. Machine Tool Technical Seminar
    • /
    • pp.35-49
    • /
    • 2000
  • Over the past ten years we have wethnessed a revolution in metalcutting in the field of High Speed Machining. As machining speeds continue to increase, particularly spindle RPM, forces created by unbalance in the spindle, cutting tool, and toolholder require close attaention. It has been observed that these forces, if left uncompensated, can results in poor surface finish, loss of tool life, and spindle bearing failure. The sources of this unbalance needs to be identified and elimated in order to create a smooth, vibration free condition and allow the machine tool and its spindle to operate properly.

  • PDF