• Title/Summary/Keyword: High-speed rail

Search Result 817, Processing Time 0.026 seconds

Estimation of the Rail pad Stiffness Characteristic and the Sustainable period in Service (운행선에서 레일패드의 탄성변화율과 내구년수 예측)

  • Park, Dae-Geun;Kim, Jung-Hun;Choi, Hyun-Su;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.432-441
    • /
    • 2007
  • Any track system needs major changes of its components during its life. The most economical solution is, if possible, to make all components reach their life limit during the major track rehabilitation operation. Usually, the rail does a role as the driving component for the objective: its life-time is equivalent to around 500 million tons of traffic on high speed lines. On the KTX line with 110 trains per day, this would correspond to around 16 years, which is probably too long for the elastic pads of a concrete slab track. The most economical solution should be to change them at an intermediate step of 8 years, without changing the rail, and then to change both the rail and elastic pad at 16 years intervals (some rail changes on the South East TGV line in France began 15 years after service opening at 260 km/h, but recent rails have better characteristics).

  • PDF

Analysis on the Characteristics of the Ride Comfort for High Speed Trains on the High Speed Line/conventional Line (고속선/기존선 운행에 따른 고속철도 차량의 승차감 특성 분석)

  • 김석원;박찬경;김기환;박태원;김영국
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.999-1006
    • /
    • 2004
  • Recently, the ride comfort problem becomes increasingly important because of today's needs for train speedup. The railway has the track irregularities which cause vibrations, such as rail joints, turnout, level crossing, transition corves and super-elevation ramps, and variations in the track level(z-axis) and the gauge(y-axis). In Korea, the service run of the high speed train has been made since the 1st of April, 2004. The commercial high-speed trains must be run on the compound lines which are composed of high-speed line and conventional line. The high speed lines in both Kyoungbu line and Honam line have 57.5% and 33.8%, respectively In this Paper, the ride comfort has been reviewed by the various experimental methods when the high-speed trains are operated on both Kyoungbu line and Honam line. The results show that the high-speed train has no problems from the viewpoint of the comfort ride during the operation on the high speed line and conventional line.

A Study on the Characteristics of Transferring Vibration and Effect of Nearby-Building Induced by the High-speed Train in Operation (고속철도 운행에 의한 진동전달특성 및 인접건물에 미치는 영향에 관한 연구)

  • 배동명;신창혁;최철은;박상곤;백용진
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.354-364
    • /
    • 2001
  • The vibration induced by high speed train running on rail is dealt with as an environmental problem. The train induced vibration is characterized by moving loads at specific frequencies and soil conditions. In fact, it is predicted that the vibration sources are involved the wheel distance, number of cars, speed of operation, drift of rails, structural born vibration, etc. In this paper the characteristics of transferring vibration induced by the high-speed train in operation is discussed. Field measurements was conducted at region from Chungnam Yungj So-jung-myan to Chungbuk Chungwon hyun-do-myun. In the near future. these data will be used as the fundamental data for establishment of the countermeasure for vibrational reduction of high speed train using the results of the field measurements and quantitative prediction of the vibration level

  • PDF

Theoretical Analysis on the Array Microphone Measurement for Noise from Rails (배열 마이크로폰을 이용한 레일 방사 소음 측정에 관한 이론 해석)

  • Ryue, Jungsoo;Jang, Seungho;Kwon, Hyu-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.238-247
    • /
    • 2014
  • In this paper, rail vibration and its sound radiation are investigated, then the rail noise measurement by using microphone array is explored theoretically. A concrete slab track for domestic high speed trains is modeled as a Timoshenko beam on elastic support, regarding the moving of the excitation force on the rail. From the radiation characteristics of rail noise generated by a line source, the effect of moving load on sound radiation is obtained. Also it is found that the beam angle of the microphone array is a prominent factor to measure the rail noise level reliably because the rail noise propagates as a plane wave. In this investigation, a proper beam angle for the rail noise measurement by microphone array is suggested.

A Behavior Analysis of HSR concrete slab track under Variety of Rail pad stiffness on fatigue effect (피로효과를 고려한 레일패드 스프링계수 변화에 따른 콘크리트 슬래브 궤도의 거동분석)

  • Eom, Mac;Choi, Jung-Youl;Chun, Dae-Sung;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.340-350
    • /
    • 2007
  • The major objective of this study is to investigate the fatigue effects of rail pad on High Speed Railway with concrete slab track system. It analyzed the mechanical behaviors of HSR concrete slab track with applying rail pad stiffness based on fatigue effect(hardening and increasing stiffness) on the 3-dimensional FE analysis and laboratory test for static & dynamic characteristics. As a result, the hardening of rail pad due to fatigue loading condition are negative effect for the static & dynamic response of concrete slab track which is before act on fatigue effect. The analytical and experimental study are carried out to investigate rail pad on fatigue effected increase vertical acceleration and stress and decrease suitable deflection on slab track. And rail pad based on fatigue effect induced dynamic maximum stresses, the increase of damage of slab track is predicted by adopting fatigue effected rail pad. after due consideration The servicing HSR concrete slab track with resilient track system has need of the reasonable determination after due consideration fatigue effect of rail pad stiffness which could be reducing the effect of static and dynamic behavior that degradation phenomenon of structure by an unusual response characteristic and a drop durability.

  • PDF

Risk Assessment of a High-Speed Railway Bridge System Based on an Improved Response Surface Method

  • Cho, Tae-Jun;Moon, Jae-Woo;Kim, Jong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.114-119
    • /
    • 2008
  • A refined three-dimensional finite element interaction model between the high-speed train and railway bride deck has been developed in the present study. Analytical predictions of vertical deflections for a railway bridge are compared with in-situ test results and a good agreement is achieved. Then, input variables employed in the analytical comparisons are selected as random variables for the limit state functions. followed by risk assessment. For this purpose, a linear adaptive weighted response surface method has been developed and applied. A typical railway bridge has been selected and the limit state functions are employed from UIC and Korean specifications in the comparative studies. The results reveal that Korean specifications give significantly risky reliability indices in comparison with UIC specifications. It is thus encouraged from the above that the present linear adaptive weighted response surface method can be an alternative for the fast estimation of nonlinear structural systems.

  • PDF

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;Kim, Kyung-Taek;Paik, Jin-Sung;Benker, T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.110-115
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body for the carbody was implemented in the Multi-body-Simulation Program SIMPACK. The ECB frame was modelled both as flexible body and as rigid body. Four different driving conditions were analyzed. In this study dynamic behavior in general were performed to evaluate the design of eddy current brake system and specially the effect of damper was also studied. A comparison of simulations with and without damper shows that the damper have most effect for lower speed. The simulation results will be verified by comparison with measured data from on line test and also used for improving design.

  • PDF

A Network-Based Model for Estimating the Market Share of a High-Speed Rail System in the Korean NW-SE Corridor (네트워크 기반모델을 이용한 서울-부산간 고속철도 개통 후의 교통수단별 시장점유율 예측)

  • Gang-Len Chang
    • Proceedings of the KOR-KST Conference
    • /
    • 2003.02a
    • /
    • pp.127-150
    • /
    • 2003
  • This research presents a novel application of static traffic assignment methods, but with a variable time value, for estimating the market share of a high-speed rail (HSR) in the NW-SE corridor of Korea which is currently served by the airline (AR), conventional rail (CR), and highway (HWY) modes. The proposed model employs the time-space network structure to capture the interrelations among all competing transportation modes, and to reflect their supply- and demand-sides constraints as well as interactions through properly formulated link-node structures. The embedded cost function for each network link offers the flexibility for incorporating all associated factors, such as travel time and fare, in the model computation, and enables the use of a distribution rather than a constant to represent the time-value variation among all transportation mode users. To realistically capture the tripmakers' value-of-time (VOT) along the target area, a novel method for VOT calibration has been developed with aggregate demand information and key system performance data from the target area. Under the assumption that intercity tripmakers often have nearly "perfect" travel information, one can solve the market share of each mode after operations of HSR for each O-D pair under the time-dependent demand with state-of-the-art traffic assignment. Aside from estimating new market share, this paper also investigated the impacts of HSR on other existing transportation modes.

  • PDF

Pilot Spray Characteristics of Piezo type Injectors for High Pressure Injection (고압 분사용 Piezo 인젝터의 Pilot 분무특성)

  • Bae, J.W.;Kim, H.N.;Lee, J.W.;Kang, K.Y.;Ryu, J.I.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2076-2081
    • /
    • 2004
  • Future exhaust gas limits for diesel-driven passenger cars will force the automotive industry to significantly improve the performance of engine. Since modern common-rail injection systems deliver more degrees of freedom referring to the injection process, again the optimization of the injection process could offer a possibility to meet the exhaust gas limits. This study describes the characteristic the pilot spray structure of piezo-driven injector for a passenger car common-rail system to be applicable multiple injection caused by fast response rather than solenoid-driven injector. The piezo-driven injector is prototype injector with same needle chamber of solenoid injector and the solenoid-driven one is commercial injector. The pilot spray characteristic such as spray tip penetration, spray speed, spray angle were obtained by spray images, which is measured by the Mie scattering method with optical system for high-speed temporal photography. It was found that piezo-driven injector effected electric change as important factor and showed faster response than solenoid-driven injector.

  • PDF

Development of Novel Composite Powder Friction Modifier for Improving Wheel-rail Adhesion in High-speed Train (고속열차 점착계수 향상을 위한 신규 복합재료 분말 마찰조절재 개발 및 점착력 특성 평가)

  • Oh, Min Chul;Ahn, Byungmin
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.501-506
    • /
    • 2018
  • With the recent remarkable improvements in the average speeds of contemporary trains, a necessity has arisen for the development of new friction modifiers to improve adhesion characteristics at the wheel-rail interface. The friction modifier must be designed to reduce slippage or sliding of the trains' wheels on the rails under conditions of rapid acceleration or braking without excessive rolling contact wear. In this study, a novel composite material consisting of metal, ceramic, and polymer is proposed as a friction modifier to improve adhesion between wheels and rails. A blend of Al-6Cu-0.5Mg metallic powder, $Al_2O_3$ ceramic powder, and Bakelite-based polymer in various weight-fractions is hot-pressed at $150^{\circ}C$ to form a bulk composite material. Variation in the adhesion coefficient is evaluated using a high-speed wheel-rail friction tester, with and without application of the composite friction modifier, under both dry and wet conditions. The effect of varying the weighting fractions of metal and ceramic friction powders is detailed in the paper.