• Title/Summary/Keyword: High-speed permanent magnet motor

Search Result 349, Processing Time 0.033 seconds

High Performance Control of IPMSM Using HAI based SV-PWM (HAI 기반의 SV-PWM을 이용한 IPMSM의 고성능 제어)

  • Kim, Do-Yeon;Choi, Jung-Sik;Ko, Jae-Sub;Jung, Byung-Jin;Jung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.175-177
    • /
    • 2008
  • This paper is proposed a high performance speed control of the Interior Permanent Magnet Synchronous Motor through the HAI based SV-PWM. SV-PWM is controlled using HAI control. SV-PWM can be maximum used maximum dc link voltage and is excellent control method due to characteristic to reducing harmonic more than others. The hybrid combination of fuzzy control and adaptive control will produce a powerful representation flexibility and numerical processing capability. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

High Performance Control of IPMSM using AIPI Controller (AIPI 제어기를 이용한 IPMSM의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.225-227
    • /
    • 2009
  • The conventional fixed gain PI controller is very sensitive to step change of command speed, parameter variation and load disturbances. The precise speed control of interior permanent magnet synchronous motor(IPMSM) drive becomes a complex issue due to nonlinear coupling among its winding currents and the rotor speed as well as the nonlinear electromagnetic developed torque. Therefore, there exists a need to tune the PI controller parameters on-line to ensure optimum drive performance over a wide range of operating conditions. This paper is proposed artificial intelligent-PI(AIPI) controller of IPMSM drive using adaptive learning mechanism(ALM) and fuzzy neural network(FNN). The proposed controller is developed to ensure accurate speed control of IPMSM drive under system disturbances and estimation of speed using artificial neural network(ANN) controller. The PI controller parameters are optimized by ALM-FNN at all possible operating condition in a closed loop vector control scheme. The validity of the proposed controller is verified by results at different dynamic operating conditions.

  • PDF

Reduction of Cogging Torque of BLDC Motor by Sinusoidal Air-Gap Flux Density Distribution (BLDC 전동기의 정현적 공극 자속밀도 구현에 의한 코깅 토크 저감)

  • Kim, Samuel;Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.57-65
    • /
    • 2007
  • Along with the development of power electronics and magnetic materials, permanent magnet (PM) brushless direct current (BLDC) motors are now widely used in many fields of modern industry BLDC motors have many advantages such as high efficiency, large peak torque, easy control of speed, and reliable working characteristics. However, Compared with the other electric motors without a PM, BLDC motors with a PM have inherent cogging torque. It is often a principle source of vibration, noise and difficulty of control in BLDC motors. Cogging torque which is produced by the interaction of the rotor magnetic flux and angular variation in the stator magnetic reluctance can be reduced by sinusoidal air-gap flux density waveform due to reduction of variation of magnetic reluctance. Therefore, this paper will present a design method of magnetizing system for reduction of cogging torque and low manufacturing cost of BLDC motor with isotropic bonded neodynium-iron-boron (Nd-Fe-B) magnets in ring type by sinusoidal air-gap flux density distribution. An analytical technique of magnetization makes use of two-dimensional finite element method (2-D FEM) and Preisach model that expresses the hysteresis phenomenon of magnetic materials in order for accurate calculation. In addition, For optimum design of magnetizing fixture, Factorial design which is one of the design of experiments (DOE) is used.

Vector Control Implementation of PMSM Using dSPACE 1104 System (dSPACE 1104 시스템을 이용한 영구자석 동기전동기 벡터제어 구현)

  • Lee, Yong-Seok;Lee, Dong-Min;Ji, Jun-Keun;Cha, Gui-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1084-1085
    • /
    • 2007
  • This paper presents a vector control implementation for SPMSM(Surface-mounted Permanent Magnet Synchronous Motor) using dSPACE 1104 system and MATLAB/SIMULINK. SPMSM can be treated as a DC motor provided that currents of flux and torque component are controlled independently using vector control. Therefore various control algorithms for conventional DC motor control can be adopted to SPMSM. The system is designed to improve set-point tracking capability, fast response, and accuracy. In This paper, d-q equivalent modeling of PMSM is derived based on vector control theory. The PI controller is used for speed control and state feedback PI current control method is used for current control. For the implementation of high performance vector control system, dSPACE 1104 system is used. Simulations and experiments were carried out to examine validity of the proposed vector control implementation.

  • PDF

Analysis of Flux Weakening Operating Regions for a PM Synchronous Motor in HEV by considering Back EMF Harmonics (HEV용 영구자석동기전동기의 유기전압 고조파를 고려한 약자속 운전 영역해석)

  • Cho, Kwan-Yuhl;Woo, Byung-Guk;Kim, Gyoung-Man;Kang, Chan-Ho;Shin, Hee-Keun;Yoon, Byung-Chul;Park, Min-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.152-161
    • /
    • 2011
  • An interior permanent magnet synchronous motor(IPMSM) has been applied to the electric vehicle due to its high efficiency, compact volume, and wide operating speed ranges. This paper presents the analysis of the flux weakening operating regions at high speeds for the IPMSM that has back emf harmonics. The effect of the back emf harmonics on the motor speed and the maximum torque is analyzed. Also the dq currents for maximum torque operation under the voltage and the current limit conditions are analyzed. The conventional analysis and the presented analysis for the flux weakening operating regions are compared and the maximum torque - speeds characteristics for both analysis are verified through the experiment.

Development of a Flywheel Energy Storage System using Superconducting Magnetic Bearing (초전도 플라이휠 에너지 저장시스템 개발)

  • 정환명;연제욱;최재호;고창섭
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.433-441
    • /
    • 1999
  • This paper presents a S-FES(Superconducting magnetic becuing Flywheel Energy Storage System) for the p purpose of replacing battery used to store the energy. Especially, the design elements of FES, such as the b beming, wheel mateηaI, and power converter, etc., are described. The design and manufacturing techniques of t the controllable IXlwer converter are proposed to generate the sinusoidal output current in the high speed operation and to get the const빠synchronous motor with halbach cuTay of high coesive I\d-Fe-B permanent magnet is used as the driver of F FES. The proposed S-FES system shows the stable rotation characteristics at high speed range about l 10,000[rpm]. To verify the validity of proposed system, the comparative study with the conventional ball b beming s~rstem is proceeded and it is well confirmed with the result of the lower friction losses of S-FES S system.

  • PDF

The Control Method of In-Wheel PMSM for Electric Scooter using Speed Observer (속도 관측기를 이용한 전기스쿠터용 IN-WHEEL 영구자석 동기 전동기의 제어 방법)

  • Son, Tae-Sik;Lee, Yong-Kyun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Mok, Hyung-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.130-136
    • /
    • 2011
  • This paper presents the torque control algorithm of a permanent magnet synchronous motor(PMSM) for an electric scooter. The volume of the in-wheel type motor is restricted due to the complicated mechanical structure in wheel of an electric scooter, so the hall sensors instead of resolver and encoder for the rotor position sensors are installed. In this paper, the rotor speed and position are estimated from the speed estimator for vector control of a PMSM with hall sensors. The motor starts to rotate at standstill in BLDC mode with 120 degree conduction. After start up, the operating mode is changed to the vector control with maximum torque per ampere(MTPA) operation at low speeds and flux weakening control at high speeds. The performance of the proposed control algorithm is verified through the experiment in the electric scooter.

Sensorless Control of PMSM using Rotor Position Tracking PI Controller (회전자 위치 추정 PI 제어기를 이용한 PMSM 센서리스 제어)

  • Lee, Jong-Kun;Seok, Jul-Ki;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.176-178
    • /
    • 2003
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to aero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF

Mechanical design of 120,000rpm, 15kW Permanent Magnet High Speed Motor (15kW, 120,000rpm 영구자석 전동기 시스템의 기구 설계)

  • Woo, Byung-Chul;Hong, Do-Kwan;Koo, Dae-Hyun;Choi, Yoo-Young;Cho, Jung-Koo;Lee, Si-Woo;Lee, Ki-Ho;Hong, Sung-Su
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.798_799
    • /
    • 2009
  • 초고속 전동기는 일반적인 회전수를 초고속 전동기로서 기존 전동기보다 여러 가지 장점을 가지고 있어 그 수요가 늘어나고 있는 실정이다. 본 논문에서는 15 [kW], 120,000 [rpm]의 초고속 전동기를 제작하기 위한 기초설계단계에서 계산된 내용과 형상을 알아보고 그 가능성을 타진해 본 내용이다. 본 연구에서는 영구자석을 사용한 초고속 전동기로서 해석과 설계과정을 거치면서 로터의 직경을 계산하고 구동 드라이버설계제작 및 사용할 영구자석과 코어을 제작하여 고소속 전동기를 제작하고 제작된 전동기를 조립하여 그 특성을 평가하는 순서로 개발을 완료하고자 하였다. 본 논문에서는 이러한 내용 중 FEM 설계 과정을 소개하고 그 가능성에 대해서 알아보았다.

  • PDF

Senseless Control of PMSM using Current Regulator Output Voltage in the Synchronous D-axis (자속축 전류제어기 출력전압를 이용한 PMSM 센서리스 제어)

  • Lee, Jong-Kun;Seok, Jul-Ki;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.147-149
    • /
    • 2004
  • This paper presents a new velocity estimation strategy of a non-salient permanent magnet synchronous motor(PMSM) drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system which has the information of rotor position error. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error to zero. For zero and low speed operation, the PI gains of rotor position tracking controller have a variable structure. The PI tuning formulas are derived by analyzing this control system using the frequency domain specifications such as phase margin and bandwidth assignment.

  • PDF