• 제목/요약/키워드: High-speed Machining

검색결과 630건 처리시간 0.028초

공작기계 주축용 스핀들 전동기 구동에 관한 연구 (A Study on the Spindle Motor Drive for the Spindle of Machining Center)

  • 한영성;안성찬;송종환;이학성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 F
    • /
    • pp.2110-2112
    • /
    • 1997
  • The induction motor drive for the spindle of machining center is required to do not only a constant torque operation in low speed region(below base rpm), but also a constant power operation in high speed region(beyond base rpm). Also, control voltage shortage due to high speed operation must be overcome. The vector controlled inverter system with input 3 phase pwm converter is designed for that kind of condition. We experimented the performance of the inverter system with spindle motor made by Hyosung industries co.

  • PDF

고속가공시 절삭조건과 미시적 정밀도의 관계 (The relation of Cutting conditions and Microscopic precision)

  • 강명창;김정석;이득우;김전하;김철희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.981-984
    • /
    • 1997
  • This paper deals with the relation of cutting conditions and damaged layer by investigating cutting force, cutting temperature and residual stress in high speed machining. Damaged layer was measured using optical microscope on samples prepared by metallographic techniques. The scale of this damaged layer depends upon characteristics of cutting force and cutting temperature. Damaged layer depth increases with feed per tooth and radial depth. In a different another way, damaged layer remains almost unchanged according to spindle speed. Therefore, the effective method for decreasing damaged layer is that cut down feed per tooth and radial depth.

  • PDF

다구찌 방법을 이용한 고속주축의 강성 개선 (Improvement of a Stiffness for High-Speed Spindle Using the Taguchi Method)

  • 임정숙;정원지;이춘만;이정환
    • 한국정밀공학회지
    • /
    • 제24권2호
    • /
    • pp.127-133
    • /
    • 2007
  • The spindle system with a built-in motor can be used to simplify the structure of machine tools, to improve the machining flexibility of machine tools, and to perform the high speed machining. To improve the competition power of price to quality, spindle design is very important. Because it possesses over 10 percent of machine tool's price. The latest machine tools have rotational frequency and excellent about might and precision cutting. So it requires static and dynamic strength in the load aspect. In conclusion, the deformation of the spindle end have to extremely small displacement in static and dynamic load. In this study, On the assumption that the bearings that are supporting 24,000rpm high-speed spindle are selected in the most optimum condition, the natural frequency and deformation of the spindle end is obtained by FEM mode analysis. The Taguchi Method was used to draw optimized condition of bearing position and it's stiffness.

$ADAMS^(R)$를 이용한 초고속 스핀들의 회전 밸런싱 (Balancing)에 대한 연구 (A Study on Rotating Balancing of High-speed spindle by using $ADAMS^(R)$)

  • 조영덕;정원지;이춘만;윤상환;황영국;박기범
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.560-563
    • /
    • 2005
  • According to the demand of the high productivity, the interest of manufacturing skills is growing in industrial society. Especially the high-speed spindle in machining center becomes important these days. The rotating accuracy of the spindle in machining center concerns the centrifugal force. In detail explaining, it is influenced by the unbalance mass. In this study, we could find changes of the vibration caused by condition (increased mass, rotating speed, position) of unbalance mass and verify it using a software - $ADAMS^(R)$ With this study, it will help workers on the spot solve the problems concerning unbalance mass.

  • PDF

Numerical Design Method for Water-Lubricated Hybrid Sliding Bearings

  • Feng, Liu;Bin, Lin;Xiaofeng, Zhang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.47-50
    • /
    • 2008
  • This paper presents a new water-lubricated hybrid sliding bearing for a high speed and high accuracy main shaft system, along with the numerical method used for its design. The porous material for the restrictor and the restriction parameter were chosen based on the special requirements of the water-lubricated bearing. Subsequent numerical calculations give the load capacity, stiffness, and friction power of different forms of water-lubricated bearings. The pressure distribution of the water film in a 6-cavity bearing is shown, based on the results of the numerical calculations. A comparison of oil-lubricated and water-lubricated bearings shows that the latter benefits more from improved processing precision and efficiency. An analysis of the stiffness and friction power results shows that 6-cavity bearings are the preferred type, due their greater stiffness and lower friction power. The average elevated temperature was calculated and found to be satisfactory. The relevant parameters of the porous restrictor were determined by calculating the restriction rate. All these results indicate that this design for a water-lubricated bearing meets specifications for high speed and high accuracy.

고속가공기술

  • 이종찬
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1998년도 춘계학술대회 논문집
    • /
    • pp.5-10
    • /
    • 1998
  • Although the high speed machining technology (HSM) has been significantly studied in worldwide for past two decades, and has been widely applied in machining processes at many countries, it is not well known in domestic machining industries. The objective of this article, therefore, is to introduce the HSM to domestic industries so that they can apply the HSM on their products and results in improvements on productity and precision. The concept of HSM, tool materials and tool wear of HSM, surface roughness of HSM, and the chip shape of HSM are discussed.

  • PDF

다이아몬드 피복공구에 의한 SiC 강화 복합재료의 절삭특성 (Machining Characteristics of SiC reinforced Composite by multiple diamond-coated drills)

  • M. Chen;Lee, Y. M.;S. H. Yang;S. I. Jang
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.533-537
    • /
    • 2003
  • Compared to sintered polycrystalline diamond (PCD), the deposited thin film diamond has a great advantage on the fabrication of cutting tools with complex geometries such as drills. Because of high performance in high speed machining non-ferrous difficult-to-cut materials in the field of automobiles industry, aeronautics and astronautics industry, diamond-coated drills find large potentialities in commercial applications. However, the poor adhesion of the diamond film on the substrate and high surface roughness of the drill flute adversely affect the tool lift and machining quality and they become the main technical barriers for the successful development and commercialization of diamond-coated drills. In this paper, diamond thin films were deposited on the commercial WC-Co based drills by the electron aided hot filament chemical vapor deposition (EACVD). A new multiple coating technology based on changing gas pressure in different process stages was developed. The large triangular faceted diamond grains may have great contribution to the adhesive strength between the film and the substrate, and the overlapping ball like blocks consisted of nanometer sized diamond crystals may contribute much to the very low roughness of diamond film. Adhesive strength and quality of diamond film were evaluated by scanning electron microscope (SEM), atomic force microscope (AFM), Raman spectrum and drilling experiments. The ring-block tribological experiments were also conducted and the results revealed that the friction coefficient increased with the surface roughness of the diamond film. From a practical viewpoint, the cutting performances of diamond-coated drills were studied by drilling the SiC particles reinforced aluminum-matrix composite. The good adhesive strength and low surface roughness of flute were proved to be beneficial to the good chip evacuation and the decrease of thrust and consequently led to a prolonged tool lift and an improved machining quality. The wear mechanism of diamond-coated drills is the abrasive mechanical attrition.

  • PDF

실험적 방법에 의한 파인세라믹스의 연삭성에 관한 연구 (A study on the Grindability of Fine Ceramics by Experimental Method)

  • 김성겸
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.35-42
    • /
    • 2011
  • This paper describes the characteristics of high speed grinding and the influence of wheel surface speed V and a grindability of the grinding materials. The various fine ceramics pieces was ground by metal and vitrified bonded diamond wheel. The surface roughness of fine ceramics(Zirconia($ZrO_2$), Silicon Carbide(SiC), Silicon Nitride($Si_3N_4$), Alumina($Al_2O_3$)) decreases from $0.05{\mu}m(R_{max})$ to $0.025{\mu}m(R_{max})$ when the wheel speed at grinding point increases the wheel speed. Relation between the temperature at grinding point and surface roughness was linear. Abrasive jet machining(AJM), a specialized from of shot blasting, is considered one of the most helpful micro machining methods for hard and brittle materials such as glasses and ceramics by constant pressure grinding.

고속 볼엔드밀링에서 가공조건에 따른 초내열합금 (Inconel 718)의 가공특성 평가 (Machining Characteristics Evaluation of Super Heat-resistant Alloy(Inconel 718) According to Cutting Conditions in High Speed Ball End-milling)

  • 권해웅;김정석;강익수;김기태
    • 한국생산제조학회지
    • /
    • 제19권1호
    • /
    • pp.1-6
    • /
    • 2010
  • Inconel 718 alloy has been applied to high temperature, high load and corrosion resistant environments due to its superior properties. However, This alloy is a difficult-to-cut nickel-based superalloy and the chipping or notch wear is mainly generated on the cutting edge of the tool. In this study, the machinability of Inconel 718 is investigated to improve tool life under various cutting conditions with TiCN-based coated ball-end mills. The cutting conditions can be suggested to improve both the tool life and machined surface quality in Inconel 718 high speed machining.

공작기계의 서보제어와 입력성형기법 (Input Shaping for Servo Control of Machine Tools)

  • 김병섭
    • 한국정밀공학회지
    • /
    • 제28권9호
    • /
    • pp.1011-1017
    • /
    • 2011
  • Servo control loops are a core part in the control architecture of machine tools. Servo control loops manage acceleration, velocity and position of all the axes in a machine tool based on commands. The performance of servo control loops sets the basis for quality of production paris and cycle time reduction. First, this paper presents a general control architecture of machine tools and several control schemes in literature, which can be applicable to machine tools control; including Zero Phase Error Tracking Control (ZPETC) and Cross Coupling Control (CCC). After that, modem control strategies to mitigate the problem of high speed machining are reviewed. In high speed machining, high accelerations excite the machine structure up to high frequencies, thereby exciting the structure's modes of vibration. These structural vibrations need to be damped if accurate positioning or trajectory following is required. Input shaping is an attractive option in dealing with structural vibrations. The advantages and drawbacks of using input shaping technique for machine tools are discussed in detail.