• 제목/요약/키워드: High-speed Machining

검색결과 630건 처리시간 0.026초

합금공구강 SKS3의 와이어컷 방전가공 특성 (Machining Characteristics of SKS3 in Wire Cut Electrical Discharge Machining)

  • 고병두;신명철
    • 한국공작기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.101-106
    • /
    • 2008
  • In the wire cut electrical discharge machining, the optimal machining parameters setting satisfying the requirements of both high efficiency and good quality is very difficult because its process involves a series of complex physical phenomena and the machining parameters are numerous over diverse range. In this paper, the experimental investigation has been performed to find out the influence of the machining parameters on the machining performance such as cutting speed and surface roughness. The selected experimental parameters are no load voltage, discharge peak current and pulse-off time. The experimental results give the guideline for selecting suitable machining parameters.

요인 실험계획법 회귀분석을 이용한 소경 엔드밀의 공구수명에 대한 연구 (A Study on tool life in the high speed machining of small-size end mill by factorial design of experiments and regression model)

  • 임표;박상윤;양균의
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.73-80
    • /
    • 2006
  • High speed machining(HSM) technique is widely used in the appliance, automobile part and mold industries, because it has many advantages such as good quality, low cost and rapid machining time. But it also has problems such as tool breakage, smooth tool path, and so on. In particular, small size end mill is easy to break, so it must be changed before interrupting operation. Generally, the tool life of small size end mill is affected by the milling conditions whose selected parameters are spindle speed, feedrate, and width of cut. The experiments were carried out by full factorial design of experiments using an orthogonal array. This paper shows optimal combination and mathematical model for tool life, Therefore, the analysis of variance(ANOVA) is employed to analyze the main effects and the interactions of these milling parameters and the second-order polynomial regression model with three independent variables is estimated to predict tool life by multiple regression analysis.

정밀 공작기계의 회전 영역별 진동 및 불평형량 감소에 따른 가공 정밀도 영향에 관한 연구 (A Study on the Machining Accuracy according to Vibration and Unbalance Decrease in Rotational Speed Domains of High Precision Machine Tools)

  • 손덕수;김상화;박일환
    • 한국기계가공학회지
    • /
    • 제12권2호
    • /
    • pp.121-126
    • /
    • 2013
  • Precision machine tools for high dignity cutting are needed for efforts to improve machining accuracy. However, there are many factors to improve machining accuracy. This study investigated how machining accuracy changes when variation and unbalance amount in rotational speed domain is decreased. Machining accuracy of initial machine tools depends on manufacturing and assembly of parts such as bearing. And then, vibration and noise vary with volume of unbalance amount when it is rotation, so it effects unbalance amount. Also vibration and noise increased by unbalance shorten spindle's life and it especially makes worse boring accuracy. Therefore, this study studied the change of roundness and cylindricity of workpiece when it decreases variation and unbalance in rotational speed domain.

볼 엔드밀을 통한 자유곡면의 고속가공에서 절삭방향에 따른 가공성 평가 (Machinability Evaluation with Cutting Direction in High Speed Machining of Free Form Surface through Ball End Milling)

  • 김경균;강명창;이득우;김정석
    • 한국정밀공학회지
    • /
    • 제18권2호
    • /
    • pp.84-89
    • /
    • 2001
  • In recent years, there is increasing demand of esthetic design and complex function in aerospace, automobile and die/mold industry, which brings into limelight high-precision, high-efficient machining of sculptured surface. This paper deals with the establishment of the optimal tool path on free form surface in high speed ball end milling. Ball end milling is widely used for free form surface die and mold. In this machining, the cutting direction was changed with tool path. The cutting characteristics, such as cutting force and surface form are varied according to the variation of cutting directions. In this paper, the optimal tool path with down cutting in free form surface cutting is suggested.

  • PDF

미소직선 공구경로의 NURBS 변환 (NURBS Post-processing of Linear Tool Path)

  • 김수진;최인휴;양민양
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1111-1117
    • /
    • 2003
  • NURBS (Non Uniform Rational B-Spline) is widely used in CAD system and NC data for high speed machining. Conventional CAM system changes NURBS surface to tessellated meshes or Z-map model, and produces linear tool path. The linear tool path is not good for precise machining and high speed machining. In this paper, an algorithm to change linear tool path to NURBS one was studied, and the machining result of NURBS tool path was compared with that of linear tool path. The N-post, post-processing and virtual machining software was developed. The N-Post post-processes linear tool path to NURBS tool path and quickly shades machined product on OpenGL view and compares a machined product with original CAD surface. A virtual machined model of original tool path and post-processed tool path was compared to original CAD model. The machining error of post-processed NURBS tool path was reduced to 43%. The original tool path and NURBS tool path was used to machine general model using same machine tool and machining condition. The machining time of post-processed NURBS tool path was reduced up to 38%.

  • PDF

임펠러 5축 NC가공을 위한 가공전략수립 지원시스템 (A 5-Axis NC Machining Strategy Support System for an Impeller)

  • 조민호;김동원;허은영;이찬기
    • 산업공학
    • /
    • 제21권4호
    • /
    • pp.411-417
    • /
    • 2008
  • An impeller is a type of high-speed rotor that is used to compress or transfer fluid under high-speed and pressure at high temperatures. The impeller is composed of an axial hub and several blades attached along the hub. The weight and shape of an impeller must be balanced, because their imbalances can cause noise and vibration, which can lead to the breakage of the impeller blades during operation. Thus, the hub and blades of an impeller are commonly machined in a 5-axis NC machine to obtain qualified surfaces. The impeller machining strategy or process plan can not be easily obtained due to the complex, overlapped and twisted shapes of impeller blades. Skillful machining process planners may generate appropriate machining strategies based on their experiences and floor data. However, in practice most shop floor data for the impeller machining is not well-structured such that it does not effectively provide a process planner with information for machining strategies and/or process plans. This paper reports the development of a case-based machining strategy support system (CBMS) that employs case-based reasoning to obtain the machining strategy of an impeller by using the existing machining strategies of the shop floor. The CBMS generates impeller machining strategies through a stepwise reasoning process considering the similarity features between the blade shapes and machining regions. A case study is provided to demonstrate that CBMS can generate useful machining strategies facilitating process planners. The developed system can simulate the tool paths of impeller machining and runs on the web.

고속 가공을 이용한 금형의 효율적 생산 제 1 부: 이송 위상차와 런아웃이 가공면에 미치는 영향 (High Speed Machining Considering Efficient Manual Finishing Part I: Phase Shift and Runout Affecting Surface Integrity)

  • 김민태;제성욱;이해성;주종남
    • 한국정밀공학회지
    • /
    • 제23권12호
    • /
    • pp.30-37
    • /
    • 2006
  • In this work, the surface integrity smoothened with a ball end mill was investigated. Because surface integrity mainly affects the manual finishing process, $RV_{AM}$(Remaining Volume After Machining) was introduced, and it gives the relation between machining process and finishing process. Runout and phase shift which adversely affect surface integrity were considered in the generation of surface topography. Cutting points in ball end milling were identified with positional vectors and a set of vectors which have the minimum height in unit area was selected for the generation of surface and $RV_{AM}$. $RV_{AM}$ variation according to runout and phase shift was calculated and experimentally verified in proposed HSM conditions for mold machining. From the simulations and the experiments, a desirable High Speed Machining condition was suggested.

서보 모터의 가감속을 고려한 NURBS 곡선의 실시간 직선 보간 (Real-time Line Interpolation of a NURBS Curve based on the Acceleration and Deceleration of a Servo Motor)

  • 이제필;이철수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.405-410
    • /
    • 2001
  • In this paper, a new parametric curve interpolator is proposed based on a 3D(3-dimensional) NURBS curve. A free curve is generally divided into small linear segments or circular arcs in CNC machining. The method has caused to a command error, the limitation of machining speed, and the irregular machining surface. The proposed real-time 3D NURBS interpolator continuously generates a linear segment within the range of allowable acceleration/deceleration in the motion controller. Therefore, the algorithm calculates the curvature and the remained distance of a command curve for the smoothing machining. It is expected to attaining high speed and high precision machining in CNC Machine Tool.

  • PDF

고속가공을 위한 검사시편에 관한 연구 (A Study on the Speciman For High Speed Machining)

  • 정종윤;황영수;이춘만;정원지;고태조
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.77-84
    • /
    • 2003
  • The properties of a machine tool greatly affect machining quality since a machine tool has large variance in its features. Machine tool makers want to find best machining condition with the one that they have built. Machine builders need to develop test specimen since it helps finding characteristics of machine tools when the machining properties of the specimen are analyzed. This paper develops test specimen to identify features of the main spindle, the feeding device, and the frame of a machine tool. The specimen is machined with a high speed machine and the features of the machine are analyzed with test items. They are surface roughness, overshoot in axial movement, errors in circular movement, feeding with small movement and compensational error. This work can improve usability for a machine tool in machining practice.

고속 머시닝센터의 성능평가 기술에 관한 연구 (A Study on the Performance Evaluation Technology in High Speed Machining Center)

  • 강익수;강명창;김정석;김기태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.352-357
    • /
    • 2004
  • The high speed machining center(HMC) has been widely applied to manufacture a die and machine elements product in industrial field. Because the evaluation for HMC is not sufficiently performed, ineffective machining is occasionally conducted in machining industry. In this study, the dynamic characteristics of newly developed machining center is evaluated under running condition and the machinability is investigated experimentally. Also, the in-process measuring instrument which can measure the tool wear on the machine were developed by using the CCD and exclusive jig and calibration instrument for tool wear measurement.

  • PDF