• 제목/요약/키워드: High-speed EMU

검색결과 88건 처리시간 0.03초

충돌 후 열차의 차체 가속도 평가 기법 연구 (A Study on the Techniques to Evaluate Carbody Accelerations after a Train Collision)

  • 김준우;구정서
    • 한국소음진동공학회논문집
    • /
    • 제20권5호
    • /
    • pp.477-485
    • /
    • 2010
  • In this study, we suggested several approaches to evaluate the collision acceleration of a carbody under the article 16 of the Korean rolling stock safety regulations. There are various methods to evaluate the rigid body accelerations such as the displacement comparison method by double integration of filtered acceleration data, the velocity comparison method by direct integration of filtered acceleration data, and the analysis method of a velocity-time curve. We compared these methods one another using the 1D dynamic simulation model of Korean high-speed EMU composed of nonlinear springs or bars, dampers, and masses. From the simulation results, the velocity-time curve analysis method and the displacement comparison method are recommended to filter high frequency oscillations and evaluate the maximum and average accelerations of a carbody after a train collision.

동력분산형 차세대고속전철의 충돌안전도 개념설계 연구 (A Study on Conceptual Design for Crashworthiness of the Next Generation High-speed EMU)

  • 김거영;조현직;구정서
    • 한국철도학회논문집
    • /
    • 제11권3호
    • /
    • pp.300-310
    • /
    • 2008
  • 본 논문에서는 국내철도차량안전기준의 충돌안전 요구사항을 만족하는 동력 분산형 고속전철의 충돌안전도 개념설계에 대하여 연구하였다. 국내안전기준에는 36km/h 열차 대 열차 충돌, 15ton 변형체 장애물과 110km/h 충돌 등 2가지 중충돌 사고에 대한 충돌안전성능을 요구한다. 한국형 분산형 차세대고속열차는 17ton 축중의 동력집중형 KTX와 달리 13ton 축중을 가지는 2TC-6M로 구성된다. 이론적 수치적 해석을 통하여 주요 압괴구조 및 부품의 평균압괴하중과 변형량을 에너지 흡수 관점에서 충돌안전도 개념설계안으로 도출하였다. 도출된 개념 설계안은 1차원 막대-스프링-댐퍼-질량 동역학 시뮬레이션 결과로부터 국내 충돌안전기준을 잘 만족시킬 수 있음을 보였다.

전기식 플러그 도어 하부시스템 기능 분석 (Functional Analysis of Subsystem for Electric Plug Door)

  • 정의진;홍재성;원종운;이장무;이한민;김길동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.2198-2199
    • /
    • 2011
  • The sliding door and plug door are the main types of door system in the EMU(Electric Multiple Unit). The sliding door is widely used in Korea but has weak point in the noise problem. In the low operation speed, the noise coming from outer side of the EMU is not an important factor. As the speed is higher than before, noise is increased and make an issue. The main cause of noise is the imperfect air tightness in the EMU. The plug door system has advantages for the noise reduction characteristic in the high speed area. Actually the noise level is an important factor for the passenger comfort. In this paper, we will describe the characteristic of electric plug door and functions of sub component.

  • PDF

틸팅열차(TTX)의 정장품 성능평가 연구 (A Study on Performance Evaluation of On-board Electric Device of TTX(Tilting Train Express))

  • 한성호;이수길;서승일
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.239-242
    • /
    • 2005
  • This paper introduced an approach of improvement of performance of Electric device for EMU type Train like as TTX. The electric equipments are characterized by insulation, Noise, cooling system etc. and Their weight arc decided by these factors. There are two kinds of power source in EMU train. First, DC voltage source, 1500 volt, 750 volt is used for subway system. Second, AC power source 25000 volt is applied to high speed train and existing main lines. Composite material has the protection of inrush current and high frequency noise. We can use this material to minimize weight of train. Additionally we can get energy saving when operator service TTX.

  • PDF

분산형 고속전철의 하중조건에 따른 정적 하중시험 평가 (The Structural Analysis and Experimental Verification for the Next Generation High Speed EMU)

  • 최정용;정원화;박근수;우관제
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.307-313
    • /
    • 2011
  • Hyundai Rotem Company has designed and manufactured the next generation high speed EMU bodyshell (M3-car). Korean Railway Safety Law specifies the loads vehicle bodies shall be capable of withstanding, identifies what material data shall be used and presents the principles to be used for design verification by analysis. Therefore, in order to fulfill the structural requirements, Hyundai Rotem Company has carried out Finite Element Analysis (FEA) and static load test to verify whether the carbody structure has enough strength to withstand the loads specified by Korean Railway Safety Law. This research contains the results obtained by the FE analysis and static load test. The FE analysis is carried out using NX I-DEAS 6.1 and specially designed test jigs and equipment are used for the load tests.

  • PDF

동력 분산형 고속철도용 변압기의 출력 간섭현상을 저감시키기 위한 권선 배치 방법 (Winding Disposition to Minimize the Output Interference of Transformers for the High-Speed EMU)

  • 박병건;안성국;현동석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1873-1877
    • /
    • 2010
  • In the high-speed EMU, the modularized traction converter produces the significant harmonic currents caused from the switching behavior of a power converter. These harmonic currents bring the interference among the traction equipment. One way to minimize the interference is to design the secondary windings of a power transformer decoupled magnetically as possible. This paper presents a magnetic field analysis on a winding disposition to clarify an impact on magnetic decoupling between secondary windings, under a limited height of a train. Two winding dispositions for a single-phase shell-type transformer are constructed and simulated by a three-dimensional finite elements method (FEM) model. Two different winding dispositions are constructed and simulated by three-dimensional FEM model using Maxwell3D.

  • PDF

동력분산형 고속철도의 변압기 및 컨버터 스위칭 성능 개선 연구 (Study on Improving the Performances of Transformer and Convertor Switching Used for the High-Speed EMU)

  • 박병건;현동석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1182-1187
    • /
    • 2008
  • In this research, studied were performance improvements of the power conversion system for the high speed EMU. The object of this research is separated into two parts ; the one is the analysis of the designed transformer and the other is the switching improvement of a parallel PWM converter. The multi-outputs of a transformer must be balanced. However, the output of transformer is interfered and unbalanced in practical operation. To solve these problems, the electromagnetic analyzing model of a transformer is used to minimize the output interference. Also, the improvement of converter switching can reduce the unbalanced output and harmonics.

  • PDF

차세대 고속철도(동력분산식)에 적용할 스마트센서 사례 연구 (Case Studies on Smart Sensor Application for the Next Generation High-Speed EMU)

  • 장덕진;강송희;송달호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.1995-2005
    • /
    • 2008
  • Recently, the smart sensors and USN (Ubiquitous Sensor Network) technologies are emerging. Smart sensors add the capability of storing local temporary data, processing instant operations, transmitting information outward, to the simple sensing devices. The USN is a wireless network of sensor/smart sensors that can collect data anywhere anytime and exchange the data within the network. In this research, case studies are performed on the smart sensors and USN applications. The cases were grouped in four categories, domestic private, domestic public, foreign private, and foreign public. Based on that survey, promising applications will be proposed and developed to be implemented to the next generation high-speed EMU.

  • PDF

Harmonic Analysis on the Korean AC Railway System

  • Lee, Han-Min;Kim, Gil-Dong;Oh, Kwang-Hae;Jang, Gil-Soo;Kwon, Sae-Hyuk
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권3호
    • /
    • pp.235-243
    • /
    • 2005
  • Line constants of the catenary system are estimated. The harmonic current that the Korean Train Express (KTX) injects into the catenary is measured to precisely analyze the harmonic effects. The Korean high-speed railway system is modeled by estimated and measured results. The system model is applied for predicting the harmonic effects. The simulation results from the system model are compared to field test data concerning the total harmonic distortion (THD). The reliability of the system model is verified.