• Title/Summary/Keyword: High-rise office Architecture

Search Result 28, Processing Time 0.023 seconds

An Analysis on Development and Application of Solar Sunlighting Systems (첨단 태양광채광시스템의 개발현황 및 활용실태 분석에 관한 연구)

  • Kim, Jeong-Tai;Hwang, Min-Ku;Han, Bong-Soo
    • KIEAE Journal
    • /
    • v.2 no.1
    • /
    • pp.63-68
    • /
    • 2002
  • Solar sunlighting systems are useful to apply for most buildings. This study aims to analysis the development and architectural application of solar sunlighting systems. For the purpose, abroad developing situation of solar sunlighting systems were investigated and analyzed literally. And, by case studies, architectural application methods are analyzed. As results, light pipe systems are mainly used for small building and houses. Also solar mirror systems are used for atrium and underground spaces. Lens-fiber systems are applied for high rise buildings and office buildings which internally have no influx of sunlighting. Some application suggestion in our country are discussed.

Evolution of Tall Building Structures with Perimeter Diagonals for Sustainable Vertical Built Environments

  • Kyoung Sun Moon
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.4
    • /
    • pp.307-320
    • /
    • 2023
  • Tall buildings are built with an abundant amount of materials, including structural materials, coming from our limited natural resources. Tall buildings that began from about 10-story tall office towers have evolved to over 150-story tall mixed-use megastructures. As a building becomes taller, structural material requirement to resist lateral wind loads becomes exponentially larger. Therefore, it is crucial to employ efficient structural systems and optimize their design, which will contribute to sustainable vertical built environments through preservation of resources. Tube type structures with large perimeter diagonals are among the most efficient structural systems for tall buildings. Developments of braced tube, braced megatube, diagrid structures, and their optimal design strategies are reviewed. Superframed conjoined towers, produced by interconnecting multiple clustered braced tubes, are presented as a new design direction to achieve not only structural but also architectural and social sustainable design goals.

Sustainable Tall Buildings: Summary of Energy-Efficient Design

  • Kheir Al-Kodmany;Mir M. Ali;Paul J. Armstrong
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.107-120
    • /
    • 2023
  • Tall buildings are frequently decried as unsustainable due to their excessive energy usage. Early skyscrapers used natural light and ventilation to facilitate human comfort and applied organic materials such as stone, glass, wood, concrete, and terra cotta for cladding and finishes. With the advent of fluorescent lighting, modern heating, ventilation, air-conditioning (HVAC) systems, and thermally sealed curtain walls, tall office buildings no longer had to rely on natural light and ventilation to provide comfort. Energy efficiency was not a significant factor when the operational costs of buildings were relatively inexpensive. However, today's skyscrapers must become more energy-efficient and sustainable due to energy crises and climate change. This paper highlights vital energy-efficient design principles and demonstrates with illustrative case studies how they are applied to tall buildings in various parts of the world. It shows how sustainable environmental systems do not act alone but are integrated with advanced curtain wall systems, sky gardens, and atria, among others, to regulate and sustain thermal comfort and conserve energy.

A Study on the POE (Post Occupancy Evaluation) according to the Residential Environment of Mixed-use Apartment Complexes In Seoul

  • Ha, Man Joon
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.2
    • /
    • pp.197-212
    • /
    • 2020
  • In this study, POE(Post Occupancy Evaluation) evaluation indexes were selected into six categories through the consideration of theories and prior research. Therefore, qualitative supply can be achieved through POE according to the aspect of residential environment after the quantitative supply of mixed-use apartment complex by the population concentration in Seoul due to industrialization and urbanization. As the evaluation elements, detailed survey contents were selected for livability, convenience, comfort, safety, economy, and sociality. Based on the survey contents, six elements were evaluated and analyzed using Data coding and Likert scale after surveying 12 complexes (Urban areas and non-urban areas) in Seoul. As a result of the study, six categories selected as the POE showed that importance of quality of life and safety was developed in high recognition according to high satisfaction with convenience and safety. Sociality showed the lowest satisfaction in the following order : livability, comfort, economy and sociality. Residents' sense of community, interaction with neighborhood, etc., showed low satisfaction, and it seems that it is necessary to improve and supplement the system for the development of mixed-use apartment complex in the future. The detailed characteristics of livability showed high satisfaction of the living room, the front door and the main room which are main uses of housing, and low satisfaction in storage size. The analysis of convenience is that convenient public transportation was the highest, and educational environment and additional facilities were the lowest, showing the advantages and disadvantages of location characteristics. As a result of the analysis of comfort, satisfaction with the landscape area was low and it seems that green space is needed for the development of mixed-use apartment complex in the future. Lastly, regarding the safety, the satisfaction of the access control, the location of security office, etc. were high, however separation of circulation was low. Therefore, it is necessary to clearly separate the circulation between the residence and other facilities in the mixed-use apartment complex.

Planting Improvement and Contribution to Greenspace Function by Use of Roadside Buffer Greens;In the Case of Songpadearo and Nambusunwhanno in Songpa-gu, Seoul (도심 도로변 완충녹지의 주변 토지이용을 고려한 녹지기능 재설정 및 식재방안;서울시 송파구 송파대로, 남부순환로틀 대상으로)

  • Kim, Yeong-Yong;Lee, Kyong-Jae;Choi, Jin-Woo;Han, Bong-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.39-51
    • /
    • 2008
  • This study focuses on the reconstruction of buffer greens which were installed to reduce environmental effects on roadsides constructed in the 1980s, in order to supplement various urban green functions. The subjects were buffer greens installed along the Songpadaero and Nambusunwhanro in Songpa-gu. Planting was suggesting to strengthen the buffer, landscape, shading and ecological function according to the use of the buffer green surroundings. The surroundings of the green axis subjects are high-rise apartment areas, neighboring commercial areas, commercial working areas, transportation facility areas, urban support facility areas, schools, parks, etc. However, the structure of the buffer greens were uniformed with Plantanus occidentalis and Ginkgo biloba and Zelkova serrata in the canopy layer and with Forsythia koreana and Ligustrum obtusifoliumin the shrub layer in lineal or alternate order, functioning only as buffer space. Therefore, the buffer greens need to be reconstructed, supplementing various functions according to land use, in order to improve the pedestrian walk area in terms of landscape and use of greens. In line with that, the planting improvement plans according to the land use patterns, and physical and ecological structure were classified into buffer and landscape, landscape and buffer, buffer and shading, and buffer and ecological function. In addition, improving planting function, species and facilities are suggested.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016 (설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.6
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.

Study on the Impact of Roadside Forests on Particulate Matter between Road and Public Openspace in front of Building Site - Case of Openspace of Busan City hall in Korea - (도심 도로변 가로녹지가 주변 오픈스페이스의 미세먼지농도에 미치는 영향 연구 - 부산시청 광장을 대상으로 -)

  • Hong, Suk-Hwan;Kang, Rae-Yeol;An, Mi-Yeon;Kim, Ji-Suk;Jung, Eun-Sang
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.323-331
    • /
    • 2018
  • This study was conducted to examine the effects of constructing streetside urban forests on particulate matter (PM) content in pedestrian paths and open spaces created between the main streets and buildings in a high-rise, high-density urban area. The study site is a 70m-wide open space between Busan City Hall and Jungang-street in Busan, Korea. The results showed that the density of PM differences between the open space and the adjacent main street were small in regions without linear trees and shrub rows during both the weekdays and weekend. On the other hand, the areas with linear trees and shrub rows were found to have significantly higher concentrations of PM compared to the roadway. In particular, sections with linear trees and shrub rows had higher PM levels both on roads and in adjacent open space, indicating that the composition of linear trees and shrub rows increased the concentration of PM in the off-street open space in areas with wide space between the roadway and building. The impact was more significant in the open space than the roadway. This phenomenon can be explained by the fact that PM generated by vehicles flows through the roadside shrubs by rapid wind flow but does not disperse widely in the pedestrian paths where the wind flow was reduced. In this study, we found that the roadside tree and shrub walls slowed the flow of wind, causing vehicle-emitted PM to accumulate if a wide open space was created between the road and building, resulting in higher concentration of PM in the open space. We confirmed that the distance between the road and building was a critical factor for constructing linear trees and shrub rows to reduce PM generated by vehicle traffic.

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2014 (설비공학 분야의 최근 연구 동향: 2014년 학회지 논문에 대한 종합적 고찰)

  • Lee, Dae-Young;Kim, Sa Ryang;Kim, Hyun-Jung;Kim, Dong-Seon;Park, Jun-Seok;Ihm, Pyeong Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.7
    • /
    • pp.380-394
    • /
    • 2015
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2014. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of heat and mass transfer, cooling and heating, and air-conditioning, the flow inside building rooms, and smoke control on fire. Research issues dealing with duct and pipe were reduced, but flows inside building rooms, and smoke controls were newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for thermal contact resistance measurement of metal interface, a fan coil with an oval-type heat exchanger, fouling characteristics of plate heat exchangers, effect of rib pitch in a two wall divergent channel, semi-empirical analysis in vertical mesoscale tubes, an integrated drying machine, microscale surface wrinkles, brazed plate heat exchangers, numerical analysis in printed circuit heat exchanger. In the area of pool boiling and condensing, non-uniform air flow, PCM applied thermal storage wall system, a new wavy cylindrical shape capsule, and HFC32/HFC152a mixtures on enhanced tubes, were actively studied. In the area of industrial heat exchangers, researches on solar water storage tank, effective design on the inserting part of refrigerator door gasket, impact of different boundary conditions in generating g-function, various construction of SCW type ground heat exchanger and a heat pump for closed cooling water heat recovery were performed. (3) In the field of refrigeration, various studies were carried out in the categories of refrigeration cycle, alternative refrigeration and modelling and controls including energy recoveries from industrial boilers and vehicles, improvement of dehumidification systems, novel defrost systems, fault diagnosis and optimum controls for heat pump systems. It is particularly notable that a substantial number of studies were dedicated for the development of air-conditioning and power recovery systems for electric vehicles in this year. (4) In building mechanical system research fields, seventeen studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, and renewable energies, piping in the buildings. Proposed designs, performance performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the evaluation of work noise in tunnel construction and the simulation and development of a light-shelf system. The subjects of building energy were worked on the energy saving of office building applied with window blind and phase change material(PCM), a method of existing building energy simulation using energy audit data, the estimation of thermal consumption unit of apartment building and its case studies, dynamic window performance, a writing method of energy consumption report and energy estimation of apartment building using district heating system. The remained studies were related to the improvement of architectural engineering education system for plant engineering industry, estimating cooling and heating degree days for variable base temperature, a prediction method of underground temperature, the comfort control algorithm of car air conditioner, the smoke control performance evaluation of high-rise building, evaluation of thermal energy systems of bio safety laboratory and a development of measuring device of solar heat gain coefficient of fenestration system.