• Title/Summary/Keyword: High-rise Buildings

Search Result 1,523, Processing Time 0.026 seconds

Pseudo-DC Resistivity Survey for Site Investigation at Urban Areas with Ambient Electrical Noises (전기잡음 간섭이 있는 도심지 지역 탐사를 위한 유사직류 전기비저항 기법)

  • Joh, Sung-Ho;Kim, Bong-Chan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.37-44
    • /
    • 2010
  • Recently, urban retrofit and extension, development of new buildings and facilities, and construction of underground structures like subway tunnels in urban areas give rise to significance of site investigation at urban areas. However, ambient electric noises, traffic vibrations, embedded objects work as obstacles to high-quality and accuracy in site investigation at urban areas. In this paper, a new technique called the pseudo-DC resistivity survey (in brief, PDC-R) was proposed to minimize the adverse effect of ambient electrical noises in resistivity survey. PDC-R technique utilizes an AC current with frequency range of 0.1 to 1.0 Hz rather than DC current, which is used for conventional resistivity survey. The motivation of using low-frequency AC current is to avoid 60-Hz components or its multiples in the resistivity survey which ambient noises are mostly composed of. The implementation of PDC-R technique also included the parametric study on skin effect, frequency effect and current-level effect, which led to the determination of optimal values of frequency and current level for PDC-R survey. The reliability and feasibility of PDC-R technique was verified through field tests, accompanied by the comparison with DC resistivity survey and CapSASW tests.

Evaluation of floor impact sound and airborne sound insulation performance of cross laminated timber slabs and their toppings (구조용 직교 집성판 슬래브와 상부 토핑 조건에 따른 바닥충격음 및 공기전달음 평가)

  • Hyo-Jin Lee;Yeon-Su Ha;Sang-Joon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.572-583
    • /
    • 2023
  • Demand for wood in construction is increasing worldwide. In Korea, technical reviews of high-rise Cross Laminated Timber (CLT) buildings are under way. In this paper, Floor Impact Sound Insulation Performance (FISIP) and Transmission Loss (TL) of 150 mm thick CLT floor panels made of two domestic species, Larix kaempferi and Pinus densiflora, are investigated. The CLT slabs were tested in reverberation chambers connected vertically. When comparing Single Number Quantity (SNQ) of FISIP of the bare panels, the Larix CLT is 3 dB lower in heavy-weight and 1 dB in light-weight than the Pinus CLT. However, there was no difference when concrete toppings were added to improve the performance. As the concrete toppings became thicker, the heavy-weight was reduced by 9 dB ~ 20 dB, and the light-weight by 20 dB ~ 30 dB. And the analysis of these results with area density has confirmed that the area densities are highly correlated (R2 = 0.94 ~ 0.99) to the FISIP of the CLT. The types of CLT didn't affect the TL. Comparison of theoretical TL values with measured TL values has shown that the frequency characteristics are similar but 8 dB ~ 12 dB lower in measured values. The relationship between the TL and frequency characteristics of the tested CLT slabs was derived by using the correction value.

A Study on the Construction Equipment Object Extraction Model Based on Computer Vision Technology (컴퓨터 비전 기술 기반 건설장비 객체 추출 모델 적용 분석 연구)

  • Sungwon Kang;Wisung Yoo;Yoonseok Shin
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.916-923
    • /
    • 2023
  • Purpose: Looking at the status of fatal accidents in the construction industry in the 2022 Industrial Accident Status Supplementary Statistics, 27.8% of all fatal accidents in the construction industry are caused by construction equipment. In order to overcome the limitations of tours and inspections caused by the enlargement of sites and high-rise buildings, we plan to build a model that can extract construction equipment using computer vision technology and analyze the model's accuracy and field applicability. Method: In this study, deep learning is used to learn image data from excavators, dump trucks, and mobile cranes among construction equipment, and then the learning results are evaluated and analyzed and applied to construction sites. Result: At site 'A', objects of excavators and dump trucks were extracted, and the average extraction accuracy was 81.42% for excavators and 78.23% for dump trucks. The mobile crane at site 'B' showed an average accuracy of 78.14%. Conclusion: It is believed that the efficiency of on-site safety management can be increased and the risk factors for disaster occurrence can be minimized. In addition, based on this study, it can be used as basic data on the introduction of smart construction technology at construction sites.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

TACT Productivity Management for Finish Works of Residential Buildings using Productivity Achievement Ratio (PAR) (공동주택 마감공사 TACT 기법 생산성 관리 - Productivity Achievement Ratio를 활용한 생산성 관리 -)

  • Joo, Seonu;Park, Moonseo;Lee, Hyun-Soo;Lee, Kwang-Pyo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.36-48
    • /
    • 2015
  • To complete various types of finish works with higher quality in much less time, TACT, which was mostly used for high-rise buildings, has been adapted to meet the needs for systematic schedule management in construction sites. However, the effectiveness of adapting TACT has not been shown as expected due to the different perspectives on productivity from both general contractor and subcontractors based on unforeseen conditions according to the types of site. Furthermore, not enough theoretical backgrounds, empirical data, and systematic approaches to solve the fundamental problems caused by each participants' different views on productivity has produced obstacles for establishing effective solutions. Therefore, this research aims to analyze the possible main reasons for having different point of views regarding productivity among various participants of residential building sites using TACT based on literature review, site survey, and interviews. Also, case study was conducted to propose obtainable productivity (OP) regression equation and productivity achievement ratio (PAR) with reduction factors (RFs) and actual productivity (AP) data from an actual construction site. The proposed outcome may assist general contractors converting output management with PPC to productivity management with actual data using PAR. On the other hand, subcontractors would be able to estimate theory-based maximum productivity of construction sites with TACT by using OP. The PAR will enhance the communication between general and sub-contractors for their decision making process. Finally, the main RFs derived from PAR could be used as essential keys for productivity management to increase the economical and operational effectiveness of the construction project.

A Study on Risk Factor Identification by Specialty Construction Industry Sector through Construction Accident Cases : Focused on the Insurance Data of Specialty Construction Worker (건설재해사례 분석에 의한 전문건설업종별 위험요인 탐색 : 전문건설업 근로자 공제자료를 중심으로)

  • Lee, Young Jai;Kang, Seong Kyung;Yu, Hwan
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.1
    • /
    • pp.45-63
    • /
    • 2019
  • The number of domestic construction company is expanding every year while the construction workers' exposure to disaster risk is increasing due to technological advancements and popularity of high-rise buildings. In particular, the industry faces greater fatalities and severe large scale accidents because of construction industry characteristics including influx of foreign workers with different language and culture, large number of aged workers, outsourcing, high place work, heavy machine construction. The construction industry is labor-intensive, which is to be completed under given timeline and consists of unique working environment with a lot of night shifts. In addition, when a fixed construction budget is not secured, there is less investment in safety management resulting in poor risk management at the construction site. Taking account that the construction industry has higher accident risk rate and fatality rate, risky and unique working environment, and various labor pool from foreign to aged workers, preemptive safety management through risk factor identification is a mandatory requirement for the construction industry and site. The study analyzes about 8,500 cases of construction accidents that occurred over the past 10 years and identified risk factor by construction industry sector to secure a systematic insight for risk management. Based on interrelation analysis between accident types, work types, original cause materials and assailing materials, there is correlation between each analysis factor and work industry. Especially for work types, there is great correlation between work tasks and industry type. For reinforced concrete and earthwork are among the most frequent types of accidents, and they are not only high in frequency of accidents, but also have a high risk in categories of occurrence.

Applicability of UAV in Urban Thermal Environment Analysis (도시 내 열환경 분석에서 무인항공기의 활용가능성)

  • Kang, Da-In;Moon, Ho-Gyeong;Sung, Sun-Yong;Cha, Jae-Gyu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.2
    • /
    • pp.52-61
    • /
    • 2018
  • Urban heat islands occur due to increases in the extent of artificial surfaces such as concrete, asphalt and high-rise buildings. In this regard, research into the use of satellite thermal infrared images for thermal environment analysis of urban areas is being carried out. However, such analysis of the characteristics of individual land cover with low-resolution satellite images suffers from limitations because land cover patterns in urban areas are complicated. Recently, UAV has been widely used, which can compensate for this limitation as it is able to acquire high-resolution images. In this paper, the accuracy of UAV infrared images is verified and the applicability of UAV in urban thermal environment analysis is examined by comparing the results with land surface temperatures from Landsat 8 thermal images. The results show a high positive correlation of temperature values at 0.95, and no statistically significant difference between the two groups. Comparisons of land surface temperature according to land cover showed that the largest difference observed was $4.63^{\circ}C$ in the Used area, and UAV images with small cell units reflected various surface temperatures. Furthermore, it was possible to analyze the surface temperatures of various green spaces such as wetlands and street tree areas, which can lower surface temperatures in urban areas, with street tree shadows reducing surface temperatures by about $4-6^{\circ}C$. UAV can easily and rapidly measure the surface temperature of urban areas and is able to analyze various types of green spaces. Thus, this is an effective tool for thermal environment analysis in urban areas to aid in the design or management of urban green spaces, as it can allow for land cover and the effects of the various green spaces.

Study on the Impact of Roadside Forests on Particulate Matter between Road and Public Openspace in front of Building Site - Case of Openspace of Busan City hall in Korea - (도심 도로변 가로녹지가 주변 오픈스페이스의 미세먼지농도에 미치는 영향 연구 - 부산시청 광장을 대상으로 -)

  • Hong, Suk-Hwan;Kang, Rae-Yeol;An, Mi-Yeon;Kim, Ji-Suk;Jung, Eun-Sang
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.323-331
    • /
    • 2018
  • This study was conducted to examine the effects of constructing streetside urban forests on particulate matter (PM) content in pedestrian paths and open spaces created between the main streets and buildings in a high-rise, high-density urban area. The study site is a 70m-wide open space between Busan City Hall and Jungang-street in Busan, Korea. The results showed that the density of PM differences between the open space and the adjacent main street were small in regions without linear trees and shrub rows during both the weekdays and weekend. On the other hand, the areas with linear trees and shrub rows were found to have significantly higher concentrations of PM compared to the roadway. In particular, sections with linear trees and shrub rows had higher PM levels both on roads and in adjacent open space, indicating that the composition of linear trees and shrub rows increased the concentration of PM in the off-street open space in areas with wide space between the roadway and building. The impact was more significant in the open space than the roadway. This phenomenon can be explained by the fact that PM generated by vehicles flows through the roadside shrubs by rapid wind flow but does not disperse widely in the pedestrian paths where the wind flow was reduced. In this study, we found that the roadside tree and shrub walls slowed the flow of wind, causing vehicle-emitted PM to accumulate if a wide open space was created between the road and building, resulting in higher concentration of PM in the open space. We confirmed that the distance between the road and building was a critical factor for constructing linear trees and shrub rows to reduce PM generated by vehicle traffic.

Research Trends in Hybrid Cross-Laminated Timber (CLT) to Enhance the Rolling Shear Strength of CLT (CLT의 rolling shear 향상을 위한 hybrid cross laminated timber 연구 동향)

  • YANG, Seung Min;LEE, Hwa Hyung;KANG, Seog Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.49 no.4
    • /
    • pp.336-359
    • /
    • 2021
  • In this study, hybrid CLT research and development trends were analyzed to improve the low rolling shear strength of CLT, a large wooden panel used in high-rise wooden buildings. Through this, basic data that can be used in research and development directions for localization of CLT were prepared. As a way to improve the low rolling shear strength, the use of hardwood lamina, the change of the lamina arrangement angle, and the use of structural composite materials are mainly used. Rolling shear strength and shear modulus of hardwood lamina are more than twice as high as softwood lamina. It confirmed that hardwoods can be used and unused species can be used. Rolling shear strength 1.5 times, shear modulus 8.3 times, bending stiffness 4.1 times improved according to the change of the layer arrangement angle, and the CLT strength was confirmed by reducing the layer arrangement angle. Structural wood-based materials have been improved by up to 1.35 times MOR, 1.5 times MOE, and 1.59 times rolling shear strength when used as laminas. Block shear strength between the layer materials was also secured by 7.0 N/mm2, which is the standard for block shear strength. Through the results of previous studies, it was confirmed that the strength performance was improved when a structural wood based materials having a flexural performance of MOE 7.0 GPa and MOR 40.0 MPa or more was used. This was determined based on the strength of layered materials in structural wood-based materials. The optimal method for improving rolling shear strength is judged to be the most advantageous application of structural wood based materials with strength values according to existing specifications. However, additional research is needed on the orientation of CLT lamina arrangement according to the fiber arrangement of structural wood-based materials, and the block shear strength between lamina materials.

A Comparative Analysis between Photogrammetric and Auto Tracking Total Station Techniques for Determining UAV Positions (무인항공기의 위치 결정을 위한 사진 측량 기법과 오토 트래킹 토탈스테이션 기법의 비교 분석)

  • Kim, Won Jin;Kim, Chang Jae;Cho, Yeon Ju;Kim, Ji Sun;Kim, Hee Jeong;Lee, Dong Hoon;Lee, On Yu;Meng, Ju Pil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.553-562
    • /
    • 2017
  • GPS (Global Positioning System) receiver among various sensors mounted on UAV (Unmanned Aerial Vehicle) helps to perform various functions such as hovering flight and waypoint flight based on GPS signals. GPS receiver can be used in an environment where GPS signals are smoothly received. However, recently, the use of UAV has been diversifying into various fields such as facility monitoring, delivery service and leisure as UAV's application field has been expended. For this reason, GPS signals may be interrupted by UAV's flight in a shadow area where the GPS signal is limited. Multipath can also include various noises in the signal, while flying in dense areas such as high-rise buildings. In this study, we used analytical photogrammetry and auto tracking total station technique for 3D positioning of UAV. The analytical photogrammetry is based on the bundle adjustment using the collinearity equations, which is the geometric principle of the center projection. The auto tracking total station technique is based on the principle of tracking the 360 degree prism target in units of seconds or less. In both techniques, the target used for positioning the UAV is mounted on top of the UAV and there is a geometric separation in the x, y and z directions between the targets. Data were acquired at different speeds of 0.86m/s, 1.5m/s and 2.4m/s to verify the flight speed of the UAV. Accuracy was evaluated by geometric separation of the target. As a result, there was an error from 1mm to 12.9cm in the x and y directions of the UAV flight. In the z direction with relatively small movement, approximately 7cm error occurred regardless of the flight speed.