• Title/Summary/Keyword: High-resolution climate data

Search Result 213, Processing Time 0.025 seconds

Analysis of BRD Components Over Major Land Types of Korea

  • Kim, Sang-Il;Han, Kyung-Soo;Park, Soo-Jea;Pi, Kyoung-Jin;Kim, In-Hwan;Lee, Min-Ji;Lee, Sun-Gu;Chun, Young-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.6
    • /
    • pp.653-664
    • /
    • 2010
  • The land surface reflectance is a key parameter influencing the climate near the surface. Therefore, it must be determined with sufficient accuracy for climate change research. In particular, the characteristics of the bidirectional reflectance distribution function (BRDF) when using earth observation system (EOS) are important for normalizing the reflected solar radiation from the earth's surface. Also, wide swath satellites like SPOT/VGT (VEGETATION) permit sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning. This gives a difficulty to BRDF model based reflectance normalization of high resolution satellites. The principal objective of the study is to add BRDF modeling of high resolution satellites and to supply insufficient angular sampling through identifying BRDF components from SPOT/VGT. This study is performed as the preliminary data for apply to high-resolution satellite. The study provides surface parameters by eliminating BRD effect when calculated biophysical index of plant by BRDF model. We use semi-empirical BRDF model to identify the BRD components. This study uses SPOT/VGT satellite data acquired in the S1 (daily) data. Modeled reflectance values show a good agreement with measured reflectance values from SPOT satellite. This study analyzes BRD effect components by using the NDVI(Normalized Difference Vegetation Index) and the angle components such as solar zenith angle, satellite zenith angle and relative azimuth angle. Geometric scattering kernel mainly depends on the azimuth angle variation and volumetric scattering kernel is less dependent on the azimuth angle variation. Also, forest from land cover shows the wider distribution of value than cropland, overall tendency is similar. Forest shows relatively larger value of geometric term ($K_1{\cdot}f_1$) than cropland, When performed comparison between cropland and forest. Angle and NDVI value are closely related.

Analysis of Vulnerable Regions of Forest Ecosystemin the National Parks based on Remotely-sensed Data (원격탐사자료에 기초한 국립공원 산림 생태계의 취약지역 분석)

  • Choi, Chul-Hyun;Koo, Kyung-Ah;Kim, Jinhee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.5
    • /
    • pp.29-45
    • /
    • 2016
  • This study identified vulnerable regions in the national parks of the Republic of Korea (ROK). The potential vulnerable regions were defined as areas showing a decline in forest productivity, low resilience, and high sensitivity to climate variations. Those regions were analyzed with a regression model and trend analysis using the Enhanced Vegetation Index (EVI) data obtained from long-term observed Moderate Resolution Imaging Spectroradiometer (MODIS) and gridded meteorological data. Results showed the area with the highest vulnerability was Naejangsan National Park in the southern part of ROK where 32.5% ($26.0km^2$) of the total area was vulnerable. This result will be useful information for future conservation planning of forest ecosystem in ROK under environmental changes, especially climate change.

Comparative Analysis on Cloud and On-Premises Environments for High-Resolution Agricultural Climate Data Processing (고해상도 농업 기후 자료 처리를 위한 클라우드와 온프레미스 비교 분석)

  • Park, Joo Hyeon;Ahn, Mun Il;Kang, Wee Soo;Shim, Kyo-Moon;Park, Eun Woo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • The usefulness of processing and analysis systems of GIS-based agricultural climate data is affected by the reliability and availability of computing infrastructures such as cloud, on-premises, and hybrid. Cloud technology has grown in popularity. However, various reference cases accumulated over the years of operational experiences point out important features that make on-premises technology compatible with cloud technology. Both cloud and on-premises technologies have their advantages and disadvantages in terms of operational time and cost, reliability, and security depending on cases of applications. In this study, we have described characteristics of four general computing platforms including cloud, on-premises with hardware-level virtualization, on-premises with operating system-level virtualization and hybrid environments, and compared them in terms of advantages and disadvantages when a huge amount of GIS-based agricultural climate data were stored and processed to provide public services of agro-meteorological and climate information at high spatial and temporal resolutions. It was found that migrating high-resolution agricultural climate data to public cloud would not be reasonable due to high cost for storing a large amount data that may be of no use in the future. Therefore, we recommended hybrid systems that the on-premises and the cloud environments are combined for data storage and backup systems that incur a major cost, and data analysis, processing and presentation that need operational flexibility, respectively.

Extreme Weather Frequency Data over 167 Si-gun of S. Korea with High-resolution Topo-climatology Model (고해상도 소기후모형을 이용한 국내 167개 시·군별 이상기상 발생빈도 자료)

  • Jo, Sera;Shim, Kyo Moon;Park, Joo Hyeon;Kim, Yong Seok;Hur, Jina
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.3
    • /
    • pp.164-170
    • /
    • 2020
  • The weather conditions, such as temperature, precipitation, and sunshine duration, play one of the key roles in Agriculture. In particular, extreme weather events have crucial impacts on growth and yields of crops. This study estimates statistics of extreme weather events in 167 Si-gun over South Korea derived from high-resolution(30 and 270m) topo-climatology model for key three meteorological variables(temperature, precipitation and sunshine duration). It is shown that the characteristic of each extreme weather frequency in the topo-climatology model is in good agreement with observation from Korean Meteorological Administration's Automatic Surface Observing System. Moreover, it is possible to analyze the statistics of extreme weather more realistically because this data can cover the weather at not-observed regions. Hence, this data is expected to be used as baseline data for assessing vulnerability to extreme weather and politic decisions for damage reduction in agricultural sector.

Past and Future Regional Climate Change in Korea

  • Kwon, Won-Tae;Park, Youngeun;Min, Seung-Ki;Oh, Jai-Ho
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.161-161
    • /
    • 2003
  • During the last century, most scientific questions related to climate change were focused on the evidence of anthropogenic global warming (IPCC, 2001). There are robust evidences of warming and also human-induced climate change. We now understand the global, mean change a little bit better; however, the uncertainties for regional climate change still remains large. The purpose of this study is to understand the past climate change over Korea based on the observational data and to project future regional climate change over East Asia using ECHAM4/HOPE model and MM5 for downscaling. There are significant evidences on regional climate change in Korea, from several variables. The mean annual temperature over Korea has increased about 1.5∼$1.7^{\circ}C$ during the 20th century, including urbanization effect in large cities which can account for 20-30% of warming in the second half of the 20th century. Cold extreme temperature events occurred less frequently especially in the late 20th century, while hot extreme temperature events were more common than earlier in the century. The seasonal and annual precipitation was analyzed to examine long-term trend on precipitation intensity and extreme events. The number of rainy days shows a significant negative trend, which is more evident in summer and fall. Annual precipitation amount tends to increase slightly during the same period. This suggests an increase of precipitation intensity in this area. These changes may influence on growing seasons, floods and droughts, diseases and insects, marketing of seasonal products, energy consumption, and socio-economic sectors. The Korean Peninsular is located at the eastern coast of the largest continent on the earth withmeso-scale mountainous complex topography and itspopulation density is very high. And most people want to hear what will happen in their back yards. It is necessary to produce climate change scenario to fit forhigh-resolution (in meteorological sense, but low-resolution in socio-economic sense) impact assessment. We produced one hundred-year, high-resolution (∼27 km), regional climate change scenario with MM5 and recognized some obstacles to be used in application. The boundary conditions were provided from the 240-year simulation using the ECHAM4/HOPE-G model with SRES A2 scenario. Both observation and simulation data will compose past and future regional climate change scenario over Korea.

  • PDF

Development of a Storage Level and Capacity Monitoring and Forecasting Techniques in Yongdam Dam Basin Using High Resolution Satellite Image (고해상도 위성자료를 이용한 용담댐 유역 저수위/저수량 모니터링 및 예측 기술 개발)

  • Yoon, Sunkwon;Lee, Seongkyu;Park, Kyungwon;Jang, Sangmin;Rhee, Jinyung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1041-1053
    • /
    • 2018
  • In this study, a real-time storage level and capacity monitoring and forecasting system for Yongdam Dam watershed was developed using high resolution satellite image. The drought indices such as Standardized Precipitation Index (SPI) from satellite data were used for storage level monitoring in case of drought. Moreover, to predict storage volume we used a statistical method based on Principle Component Analysis (PCA) of Singular Spectrum Analysis (SSA). According to this study, correlation coefficient between storage level and SPI (3) was highly calculated with CC=0.78, and the monitoring and predictability of storage level was diagnosed using the drought index calculated from satellite data. As a result of analysis of principal component analysis by SSA, correlation between SPI (3) and each Reconstructed Components (RCs) data were highly correlated with CC=0.87 to 0.99. And also, the correlations of RC data with Normalized Water Surface Level (N-W.S.L.) were confirmed that has highly correlated with CC=0.83 to 0.97. In terms of high resolution satellite image we developed a water detection algorithm by applying an exponential method to monitor the change of storage level by using Multi-Spectral Instrument (MSI) sensor of Sentinel-2 satellite. The materials of satellite image for water surface area detection in Yongdam dam watershed was considered from 2016 to 2018, respectively. Based on this, we proposed the possibility of real-time drought monitoring system using high resolution water surface area detection by Sentinel-2 satellite image. The results of this study can be applied to estimate of the reservoir volume calculated from various satellite observations, which can be used for monitoring and estimating hydrological droughts in an unmeasured area.

Production of Digital Climate Maps with 1km resolution over Korean Peninsula using Statistical Downscaling Model (통계적 상세화 모형을 활용한 한반도 1km 농업용 전자기후도 제작)

  • Jina Hur;Jae-Pil Cho;Kyo-Moon Shim;Sera Jo;Yong-Seok Kim;Min-Gu Kang;Chan-Sung Oh;Seung-Beom Seo;Eung-Sup Kim
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.404-414
    • /
    • 2023
  • In this study, digital climate maps with high-resolution (1km, daily) for the period of 1981 to 2020 were produced for the use as reference data within the procedures for statistical downscaling of climate change scenarios. Grid data for the six climate variables including maximum temperature, minimum temperature, precipitation, wind speed, relative humidity, solar radiation was created over Korean Peninsula using statistical downscaling model, so-called IGISRM (Improved GIS-based Regression Model), using global reanalysis data and in-situ observation. The digital climate data reflects topographical effects well in terms of representing general behaviors of observation. In terms of Correlation Coefficient, Slope of scatter plot, and Normalized Root Mean Square Error, temperature-related variables showed satisfactory performance while the other variables showed relatively lower reproducibility performance. These digital climate maps based on observation will be used to downscale future climate change scenario data as well as to get the information of gridded agricultural weather data over the whole Korean Peninsula including North Korea.

Assessment and Validation of New Global Grid-based CHIRPS Satellite Rainfall Products Over Korea (전지구 격자형 CHIRPS 위성 강우자료의 한반도 적용성 분석)

  • Jeon, Min-Gi;Nam, Won-Ho;Mun, Young-Sik;Kim, Han-Joong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.39-52
    • /
    • 2020
  • A high quality, long-term, high-resolution precipitation dataset is an essential in climate analyses and global water cycles. Rainfall data from station observations are inadequate over many parts of the world, especially North Korea, due to non-existent observation networks, or limited reporting of gauge observations. As a result, satellite-based rainfall estimates have been used as an alternative as a supplement to station observations. The Climate Hazards Group Infrared Precipitation (CHIRP) and CHIRP combined with station observations (CHIRPS) are recently produced satellite-based rainfall products with relatively high spatial and temporal resolutions and global coverage. CHIRPS is a global precipitation product and is made available at daily to seasonal time scales with a spatial resolution of 0.05° and a 1981 to near real-time period of record. In this study, we analyze the applicability of CHIRPS data on the Korean Peninsula by supplementing the lack of precipitation data of North Korea. We compared the daily precipitation estimates from CHIRPS with 81 rain gauges across Korea using several statistical metrics in the long-term period of 1981-2017. To summarize the results, the CHIRPS product for the Korean Peninsula was shown an acceptable performance when it is used for hydrological applications based on monthly rainfall amounts. Overall, this study concludes that CHIRPS can be a valuable complement to gauge precipitation data for estimating precipitation and climate, hydrological application, for example, drought monitoring in this region.

A Study on the Detection of Solar Power Plant for High-Resolution Aerial Imagery Using YOLO v2 (YOLO v2를 이용한 고해상도 항공영상에서의 태양광발전소 탐지 방법 연구)

  • Kim, Hayoung;Na, Ra;Joo, Donghyuk;Choi, Gyuhoon;Oh, Yun-Gyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.2
    • /
    • pp.87-96
    • /
    • 2022
  • As part of strengthening energy security and responding to climate change, the government has promoted various renewable energy measures to increase the development of renewable energy facilities. As a result, small-scale solar installations in rural areas have increased rapidly. The number of complaints from local residents is increasing. Therefore, in this study, deep learning technology is applied to high-resolution aerial images on the internet to detect solar power plants installed in rural areas to determine whether or not solar power plants are installed. Specifically, I examined the solar facility detector generated by training the YOLO(You Only Look Once) v2 object detector and looked at its usability. As a result, about 800 pieces of training data showed a high object detection rate of 93%. By constructing such an object detection model, it is expected that it can be utilized for land use monitoring in rural areas, and it can be utilized as a spatial data construction plan for rural areas using technology for detecting small-scale agricultural facilities.

Estimation of High Resolution Gridded Temperature Using GIS and PRISM (GIS와 PRISM을 이용한 고해상도 격자형 기온자료 추정)

  • Hong, Ki-Ok;Suh, Myoung-Seok;Rha, Deuk-Kyun;Chang, Dong-Ho;Kim, Chansoo;Kim, Maeng-Ki
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.255-268
    • /
    • 2007
  • This study generated and evaluated the high resolution (5 km) gridded data of monthly mean, maximum and minimum temperature from 2002 to 2005 over South Korea using a modified PRISM(Parameter-elevation Regressions on Independent Slopes Model: K-PRISM) developed by Daly et al. (2003). The performance of K-PRISM was evaluated by qualitative and quantitative ways using the observations and gridded data derived by inverse distance weighting (IDW) and hypsometric methods (HYPS). For the generation of high resolution gridded data, geographic informations over South Korea, such as the digital elevation, topographic facet and coastal proximity, are derived from the 1 km digital elevation data. The spatial patterns of temperature derived by K-PRISM were more closely linked to topography and coastal proximity than those by IDW. The K-PRISM performed much better than IDW for all months and temperatures, but it was equal to or slightly better than the HYPS. And the performances of K-PRISM were better in the minimum and mean temperature (winter) than the in maximum temperature (summer).