The coupled model (SMART) of dynamic meteorology model and particle dispersion model was developed. The numerical experiment on the relationship between change of land use and diffusion behavior in complex terrain was carried out using this model. It tried to investigate the change of particle diffusion behavior and local weather under the condition in which land-land breeze and sea breeze and mountain breeze intermingled. The numerical experiment results are as follows; 1) The more complicated local circulation field of the interaction of sea breeze, mountain breeze and Land -land breeze is formed. Then, the region circulation in which the urbanization is specific by location of the region is strengthened and is weakened. 2) Though in the region with dominant sea breeze, Land-land breeze does not appear directly, the progress of the sea wind to the inland is affected. 3) In the prediction of the air diffusion, emission high quality and accurate information of the emission site are important. That is to say, the dispersion predicting result which emission high quality and small error of the site perfectly vary for Land - land breeze in the effect may be brought about.
In this paper, the importance of input factors of a DNN (Deep Neural Network) PM2.5 forecasting model using LRP(Layer-wise Relevance Propagation) is analyzed, and forecasting performance is improved. Input factor importance analysis is performed by dividing the learning data into time and PM2.5 concentration. As a result, in the low concentration patterns, the importance of weather factors such as temperature, atmospheric pressure, and solar radiation is high, and in the high concentration patterns, the importance of air quality factors such as PM2.5, CO, and NO2 is high. As a result of analysis by time, the importance of the measurement factors is high in the case of the forecast for the day, and the importance of the forecast factors increases in the forecast for tomorrow and the day after tomorrow. In addition, date, temperature, humidity, and atmospheric pressure all show high importance regardless of time and concentration. Based on the importance of these factors, the LRP_DNN prediction model is developed. As a result, the ACC(accuracy) and POD(probability of detection) are improved by up to 5%, and the FAR(false alarm rate) is improved by up to 9% compared to the previous DNN model.
최근 급속한 산업화와 도시화로 인해 인위적으로 발생하는 미세먼지(Particulate matter, PM)는 기상 조건에 따라 이동 및 분산되면서 피부와 호흡기 등 인체에 악영향을 미친다. 본 연구는 기상인자를 multiple linear regression(MLR), support vector machine(SVM), 그리고 random forest(RF) 모델의 입력자료로 하여 서울시 PM10 농도를 예측하고, 모델 간 성능을 비교 평가하는데 그 목적을 둔다. 먼저 서울시에 소재한 39개소 대기오염측정망(air quality monitoring sites, AQMS)에서 관측된 PM10 농도 자료를 8:2 비율로 구분하여 모델 훈련과 검증 데이터셋으로 사용되었다. 또한 기상관측소(automatic weather system, AWS)에서 관측되고 있는 자료 중 9개 기상인자(평균기온, 최고기온, 최저기온, 일 강수량, 평균풍속, 최대순간풍속, 최대순간풍속풍향, 황사발생유무, 상대습도)가 모델의 입력자료로 선정되었다. 각 AQMS에서 관측된 PM10 농도와 MLR, SVM, 그리고 RF 모델에 의해 예측된 PM10 농도 간 결정계수(R2)는 각각 0.260, 0.772, 그리고 0.793이었고, RF 모델이 PM10 농도 예측에 가장 높은 성능을 나타냈다. 특히 모델 검증에 사용되는 AQMS 중 관악구와 강남대로 AQMS는 상대적으로 AWS에 가까워 SVM과 RF 모델에서 높은 정확도를 나타냈다. 종로구 AQMS는 AWS에서 비교적 멀리 떨어져 있지만, 인접한 두 AQMS 데이터가 모델 학습에 사용되었기 때문에 두 모델에서 높은 정확도를 나타냈다. 반면 용산구 AQMS는 AQMS 및 AWS에서 비교적 멀리 떨어져 있기에 두 모델의 성능이 낮게 나타냈다.
World trade has been increasing continuously in total volume, on the other hand, environmental protection on sea and conservation of fishery resources has been rising up the major issue. All of the world are pushing their efforts two major purposes to the full, one is taking competitive place in marine transportation throughout the world and another Is environment protection. Pusan Port as world leading Port put its all effort in bring more ocean going vessels and securing their traffic route by providing them more information related marine traffics through PTMS in port. During two years of operation, statistics of marine traffic accidents showed that many dynamic casualties such as collisions, groundings, and rammings has been decreased. However, due to increasing cargo volume, limited water area and unpredictable weather condition, potential risks still exist high. In this paper, in order to maximize the efficiency of PTMS and reduce various risks in the future, we examine risk factors over operational results and experience, and propose reasonable operational methods of PTMS.
International Journal of Internet, Broadcasting and Communication
/
제10권3호
/
pp.81-87
/
2018
It is common practice to display high-quality video images on the large display among the methods of developing tourist attractions and culture in the region as experience contents differentiation is required. This paper combines the local attractions with the OLED dual layer display system and the extended image implementation and augmented interaction technique to give the experiencer a realistic space, such as directing to new experiences and beautiful sights. In this paper, we added UI layer to additional layers of images to enable users to experience sightseeing information, weather, maps, accommodation, festivals and photo materials with images. It is implemented to add fun through interlocking. We also developed transparent OLED and dual layer panel and 3-channel multi-image playback technique.
수량과 수질 및 수생태를 동시에 고려한 수자원 관리를 위해서는 신뢰도 높은 중기 유량 예측 기술이 필수적이다. 이를 위해서는 기상자료의 특성에 대한 이해와 더불어, 시공간 해상도가 낮은 기상예측 정보를 고해상도 분포형 수문모형에서 효과적으로 활용하는 기술이 중요하다. 본 연구에서는 분포형 수문모형 WRF-Hydro와 선행시간 288시간까지의 기상정보를 제공하는 Global Data Assimilation and Prediction System (GDAPS)를 활용해 고해상도 중기 유량 예측을 수행하고 적용성을 검토하였다. 이를 위해 대상 유역인 낙동강 지류 금호강 유역에 대해 100 m 공간해상도의 WRF-Hydro모형을 구축하고 기상지상관측자료 Automatic Weather Stations (AWS)& Automated Synoptic Observing Systems (ASOS), 기상수치예보모형 GDAPS, 기상재분석자료 Global Land Data Assimilation System (GLDAS)를 입력자료로 적용한 유량 예측 모의 결과를 비교하였다. 2020~2022년 기간 3개의 강우사상에 대해 유역 평균 누적 강우량을 분석 결과, AWS&ASOS대비 GDAPS는 36%~234%, GLDAS 재분석자료는 80%~153% 범위의 과소 및 과대 산정되었음을 확인하였다. AWS&ASOS입력자료로 한 유량 예측 결과는 KGE, NSE지표가 유역 말단 강창교 지점 기준 0.6이상이었으나, GDAPS 기반 유량 모의는 강우 사상에 따라 KGE 값이 0.871~-0.131로 큰 변동성이 확인되었다. 한편, 첨두 유량 오차는 GDAPS가 GLDAS보다 크거나 비슷했지만, 첨두 홍수 발생시간의 오차는 AWS&ASOS, GDAPS, GLDAS가 각각 평균 3.7시간, 8.4시간, 70.1시간으로, 첨두 발생시간 측면에서는 GDAPS의 오차가 GLDAS보다 적었다. GDAPS를 입력자료로 한 WRF-Hydro 고해상도 중기 유량 예측은 첨두 유량의 불확실성은 크지만, 첨두 유량 발생시점에 대한 정확도는 상대적으로 높아 수자원 시설 운영에 효과적으로 활용될 수 있을 것으로 판단된다.
Journal of the Korean Data and Information Science Society
/
제26권2호
/
pp.289-299
/
2015
본 연구는 PM10 농도에 대한 계량치 예측모형 개발을 목적으로 한다. 세 종류의 자료 (기상관측 자료, 세계기상통신망 중국 관측자료, 대기질 화학수치모델자료)를 예측인자로 사용하였으며, 일일 단기예보 시스템에 쉽게 적용할 수 있도록 시간자료를 일자료로 변환하였고 시차변환을 수행하였다. 상관분석과 다중공선성 진단을 통하여 예측인자를 선택하고 두 종류의 모형 (중회귀모형, 문턱치 회귀모형)을 각각 적합하였다. 모형 안정성 검사를 위하여 모형검증을 수행하였으며, 전체자료를 사용하여 모형을 재추정한 후 예측치와 관측치 사이의 산점도와 시계열그림, RMSE, 예측성 평가측도를 작성 및 산출하여 두 모형을 비교하였다. 문턱치 회귀모형의 예측력이 고농도 PM10예측에서 다소 우수한 결과를 보였다.
Satellite-derived sea surface winds (SSWs) and atmospheric motion vectors (AMVs) over the global ocean, particularly including the areas in and around tropical cyclones (TCs), have been provided in a real-time and continuous manner. More and better information is now derived from technologically improved multiple satellite missions and wind retrieving techniques. The status and prospects of key SSW products retrieved from scatterometers, passive microwave radiometers, synthetic aperture radar, and altimeters as well as AMVs derived by tracking features from multiple geostationary satellites are reviewed here. The quality and error characteristics, limitations, and challenges of satellite wind observations described in the literature, which need to be carefully considered to apply the observations for both operational and scientific uses, i.e., assimilation in numerical weather forecasting, are also described. Additionally, on-going efforts toward merging them, particularly for monitoring three-dimensional TC wind fields in a real-time and continuous manner and for providing global profiles of high-quality wind observations with the new mission are introduced. Future research is recommended to develop plans for providing more and better SSW and AMV products in a real-time and continuous manner from existing and new missions.
Journal of the Korean Data and Information Science Society
/
제27권6호
/
pp.1593-1600
/
2016
환경시험의 목적은 시험대상 제품이 수명주기 중 겪을 수 있는 환경에 노출되었을 때 정상적인 기능을 수행할 수 있는지 설계 제조되었는지를 시험 평가하는 것이다. 본 논문은 한반도 내륙에서 운용할 군수장비의 운용환경조건에 대한 온도시험의 설계 기준을 제안한다. 온도기준은 과도하거나 과소하지 않게 합리적으로 설계되어야하는데 본 연구에서는 한국에서 가장 더웠던 지역과 가장 추웠던 지역을 기준으로 고온 및 저온에 대한 다양한 백분위별 발생빈도를 제시한다. 1904년부터 2014년까지 132개 관측지점의 기온 자료를 분석한 결과 1개월 기준으로 가장 더운 지역은 대구, 가장 추운 지역은 양평으로 확인되었다. 한반도 내륙의 운용 환경에서 고온과 저온의 1% 발생빈도값은 각각 $38.7^{\circ}C$와 -$29.0^{\circ}C$로 추정되었다. 아울러 상대습도, 풍속, 태양복사를 포함하는 고온과 저온의 일주기표도 제시한다.
과수 화상병 꽃감염 방제를 위한 농용 항생제 살포 적기를 알려주고, 병징 출현을 예측해 현장 모니터링 시기 판단을 돕는 K-Maryblyt 예측모델을 정보시스템에서 자동으로 구동하는 FBcastS을 클라우드 컴퓨팅 환경에서 개발하였다. 4개의 단위 시스템으로 구성된 FBcastS 정보시스템은 기상자료 획득 및 처리, K-Maryblyt 모델 구동, 웹 정보 서비스 그리고 방제 적기 알림 발송의 기능별로 구성하였다. 기상자료 획득 단위 시스템은 우리나라 1,583지점의 관측기상과 예보기상을 수집할 뿐만 아니라 이들 중 과수원에서 직접 관측한 761지점의 기상자료에 대한 품질관리와 입력 자료변환 등 후처리를 수행한다. 모델 구동 단위 시스템은 K-Maryblyt 예측모델을 구동하고 그 결과를 database에 저장한다. 웹 서비스 단위 시스템은 인터넷 웹 기반으로 기상 모니터링 서비스, 과수 화상병 예측정보 모바일 서비스 그리고 전국 화상병 예측정보 모니터링 서비스를 표출한다. 마지막으로 알림 발송 단위 시스템은 농촌진흥청 화상병 예찰 및 방제 지침에 따라 K-Maryblyt 모델의 예측정보와 현장의 상황을 참고해 방제 적기 알림을 재배자들에게 전달한다. FBcastS은 4.25 km 공간간격의 조밀한 우리나라 기상관측망에서 수집한 기상정보를 활용하여 화상병 예찰 정보의 신뢰를 높일 수 있고, 인터넷 웹 기반 서비스를 제공함으로써 정보의 접근성과 활용성이 높은 클라우드 기반 스마트 농업 정보시스템이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.