• Title/Summary/Keyword: High-pressure hydrogen

Search Result 664, Processing Time 0.032 seconds

Hydrodynamics and Solid Circulation Characteristics of Oxygen Carrier for 0.5 MWth Chemical Looping Combustion System (0.5 MWth 케미컬루핑 연소시스템 적용을 위한 산소전달입자의 수력학 특성 및 고체순환 특성)

  • RYU, HO-JUNG;KIM, JUNGHWAN;HWANG, BYUNG WOOK;NAM, HYUNGSEOK;LEE, DOYEON;JO, SUNG-HO;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.635-641
    • /
    • 2018
  • To select the operating condition of 0.5 MWth chemical looping combustion system, minimum fluidization velocity, transition velocity to fast fluidization and solid circulation rate were measured using mass produced new oxygen carrier (N016-R4) which produced by spray drying method for 0.5 MWth chemical looping combustion system. A minimum fluidization velocity decreased as the pressure increased. The measured transition velocity to fast fluidization was 2.0 m/s at ambient temperature and pressure. The measured solid circulation rate increased as the solid control valve opening increased. We could control the solid circulation rate from 26 to $93kg/m^2s$. Based on the measured minimum fluidization velocity and transition velocity to fast fluidization, we choose appropriate operating conditions and demonstrated continuous solid circulation at high pressure condition (5 bar-abs) up to 24 hours.

Condensation Heat Transfer of R32 and R454B Inside a Microfin Tube as an Alternative Refrigerant to R410A (R410A 대체냉매 R32와 R454B의 미세핀 관내 응축 열전달)

  • KARAGEORGIS, ANDREAS;HINOPOULOS, GEORGE;KIM, MAN-HOE
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.4
    • /
    • pp.413-418
    • /
    • 2022
  • This paper presents two-phase condensation heat transfer and pressure drop characteristics of R32 and R454B as an alternative refrigerant to R410A in a 9.52 mm OD microfin tube. The test facility has a straight, horizontal test section with an active length of 2.0 m and is cooled by cold water circulated in a surrounding annular space. The heat transfer coefficients of the annular space were obtained using the modified Wilson plot method. Average condensation heat transfer coefficient and pressure drop data are presented at the condensation temperature of 35℃ for the range of mass flux 100-400 kg/m2s. The average condensation heat transfer coefficients of R32 refrigerant are 35-47% higher than R410A at the mass flux considered in the study, while R454B data are similar to R410A. The average pressure drop of R32 and R454B are much higher than R410A and they are 134-224% and 151-215% of R410A, respectively. R32 and R454B have relatively low GWP and high heat transfer characteristics, so they are suitable as alternatives for R410A.

Response/Pressure Characteristics of $H_2O_2$ Monopropellant Thruster with the Reactor Design (반응기 설계인자에 따른 과산화수소 단일추진제 추력기의 응답속도 및 압력특성)

  • An, Sung-Yong;Lee, Jeong-Sub;Lee, Jae-Won;Cho, Seung-Hwan;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.49-52
    • /
    • 2009
  • The response times of monopropellant thrusters at a pulse mode were investigated experimentally as design parameters and feed pressure conditions. Five different model thrusters as injection direction/uniformity, aspect ratio of reactor, volumes of manifold and chamber were designed. As a results, two parameters, aspect ratio and manifold volume, were directly related to response characteristics. Additionally, chugging instability at reaction chamber was observed when pressure drop across the catalyst bed was increased due to high aspect ratio or when low pressure was built at reaction chamber.

  • PDF

Design and Development of Micro Combustor (I) - Combustion Characteristics in Scale-Downed Combustor - (미세 연소기 개발(I) - 소형 연소기 환경에서의 연소 특성 -)

  • Lee, Dae-Hun;Choe, Gwon-Hyeong;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.74-81
    • /
    • 2002
  • Combustion phenomena in a sub-millimeter scale combustor have been investigated. To evaluate scale effect on flame propagation characteristics, a cylindrical combustion chamber with variable depth was built in-house. The combustor was charged with premixed gas of hydrogen and air and ignited electronically. A piezo electric pressure transducer recorded transient pressure after the ignition. Measurements were made at different test conditions specified with chamber depth and initial pressure as parameters. Visual observation was made through a quartz glass window on top side of the combustion chamber using high speed digital video camera. From the pressure data, available work was estimated and compared with energy input required for stable ignition. The preliminary results suggested that the net thermal energy release is sufficient to generate power and enables a combustor of the size in the present study to be used as the energy source of a micro power devices .

Molecular gas properties under ICM pressure : A Case study of NGC4402

  • Hahn, You-Jin;Chung, Ae-Ree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.117.2-117.2
    • /
    • 2011
  • We probe 12CO J=2-1 and 13CO J=1-0 properties of a Virgo disk galaxy, NGC 4402 which is located near the cluster center. Our goal is to study the impact of intra cluster medium (ICM) on the molecular gas of a galaxy in the cluster environment. It has been believed that cluster galaxies are deficient in atomic hydrogen gas (HI gas) compared to their field counterparts and now there is much evidence that low density ISM can be easily removed by ram pressure caused by ICM wind. Meanwhile, no significant molecular gas deficiency of the cluster galaxy population has been found yet they show overall lower star formation rate than galaxies in the field, and it is still controversy whether dense ISM can be also stripped by the ICM wind or not. NGC 4402 with truncated HI disk($D_{HI}/D_{opt}$ ~ 0.75 and only 36%of HI gas compare to field galaxies of a similar size) and a disturbed gas morphology, appears to have strong ongoing ram pressure. Using high resolution 12 and 13CO data of NGC 4402 from a Sub Millimeter Array (SMA), we probe the molecular gas properties under strong ICM pressure. We discuss how its star formation activity and hence the global color of NGC4402 would be changed in the future.

  • PDF

Effects of Oxygen Addition on the Growth Rate and Crystallinity in Diamond CVD (다이아몬드 CVD에서 산소혼입이 증착속도 및 결정성에 미치는 영향)

  • 서문규;이지화
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.401-411
    • /
    • 1990
  • Deposition of diamond films on Si(100) from the mixtures of methane and hydrogen were investigated using hot W filament CVD method. The nucleation density could be increased thousandfold by surface treatment with SiC powder. Upon oxygen addition to the mixture, crystal facets became developed more clearly by selectively removing non-diamond carbons, but the film growth rate generally decreased. However, at a very high methane content(e.g. 10%), a small amount of oxygen addition has resulted in an increase in the film deposition rate presumably by promotion of methane decomposition. When the gas pressure was varied, the growth rate exhibited a maxiumum at around 20torr and the film crystallinity steadily improved with the pressure increase. The observed variation of the growth rate by oxygen addition was discussed in terms of its role in the pyrolysis and the subsequent gas phase reactions.

  • PDF

Synthesis of Diamond-Like Carbon Films by R.F.Plasma CVD (고주파플라즈마 CVD법에 의한 다이아몬드상 탄소박막의 합성)

  • 박상현;이덕출
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1037-1043
    • /
    • 1990
  • Diamond thin films were synthesized from the mixed gases of methane and hydrogen on silicon substrates by RF plasma chemical vapor deposition and deposited films were investigated by SEM, X-ray diffractometry and Raman spectroscopy. It is found that high quality diamond-like carbon films were successfully synthesized by PECVD under the deposition condition of 1-10 vol% of methane concentration, 0.15-0.4torr of reactor pressure, 500W of RF power, and 5-20hr of reaction time. Especially, cubo-octahedral diamond-like carbon particles were synthesized by employing 1.0 vol % of methane concentration and 0.4torr of the reactor pressure.

  • PDF

Study of thermoacoustic oscillations in half-open tubes for saturated superfluid helium

  • Wang, Xianjin;Niu, Xiaofei;Bai, Feng;Zhang, Junhui;Chen, Shuping
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.68-73
    • /
    • 2022
  • Thermoacoustic oscillations (TAOs) are spontaneous pressure oscillations frequently seen in hydrogen or helium cryogenic systems. Half-open tubes connected to cryogenic fluid with a closed room temperature end have a high potential for oscillation generation. Thermoacoustic oscillations will result in significant pressure fluctuations and additional heat load, endangering the security and stability of the cryogenic system. The goal of this paper is to investigate TAOs in superfluid helium using both theoretical and experimental methods. Five half-open tubes with varied typical inner diameters inserted into superfluid helium were installed in a test cryostat. The onset characteristics of thermoacoustic oscillations were presented and studied. The effect of temperature profile was discussed. Finally, a simple eliminating method was introduced.

a-C:H Films Deposited in the Plasma of Surface Spark Discharge at Atmospheric Pressure. Part I: Experimental Investigation

  • Chun, Hui-Gon;K.V. Oskomov;N.S. Sochungov;Lee, Jing-Hyuk;You, Yong-Zoo
    • Journal of Surface Science and Engineering
    • /
    • v.36 no.5
    • /
    • pp.357-363
    • /
    • 2003
  • The aim of this work is the synthesis of a-C:H films from methane gas using surface spark discharge at the atmospheric pressure. Properties of these films have been investigated as functions of energy W delivered per a methane molecule in the discharge. The method enables the coatings to be deposited with high growth rates (up to $100 \mu\textrm{m}$/hour) onto large-area substrates. It is shown that the films consist of spherical granules with diameter of 20∼50 nm formed in the spark channel and then deposited onto the substrate. The best film characteristics such as minimum hydrogen-to-carbon atoms ratio H/C=0.69, maximum hardness $H_{v}$ =3 ㎬, the most dense packing of the granules and highest scratch resistance has been obtained under the condition of highest energy W of 40 eV. The deposited a-C:H coatings were found to be more soft and hydrogenated compared to the diamond-like hydrogenated (a-C:H) films which obtained by traditional plasmaenhanced chemical vapor deposition methods at low pressure (<10 Torr). Nevertheless, these coatings can be potentially used for scratch protection of soft plastic materials since they are of an order harder than plastics but still transparent (the absorption coefficient is about $10^4$$10^{5}$ $m^{-1}$ At the same time the proposed method for fast deposition of a-C:H films makes this process less expensive compared to the conventional techniques. This advantage can widen the application field of. these films substantially.y.

Effect of Hydrogen(H2) Addition on Flame Shape and Combustion Products in Mixed Coflow Diffusion Flames of Methane(CH4), Ethane(C2H6) and Propane(C3H8) (동축류 메탄(CH4), 에탄(C2H6), 프로판(C3H8) 혼합 확산화염내의 수소(H2) 첨가가 화염 형상 및 연소 생성물에 미치는 영향)

  • Park, Ho-Yong;Yoon, Sung-Hwan;Rho, Beom-Seok;Lee, Won-Ju;Choi, Jae-Hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.780-787
    • /
    • 2019
  • As a carbon-free, green growth alternative, internal and external interest in hydrogen energy and technology is growing. Hydrogen was added to co-axial methane, methane-propane, and methane-propane-ethane diffusion flames, which are the main ingredients of LNG, to evaluate its effect on flame formation and combustion products. The variation in combustion products produced by adding hydrogen gradually to diffusion pyrolysis at room temperature and normal pressure conditions was observed experimentally by using a gas analyzer, and the shape of diffusion pyrolysis was observed step by step using a digital camera. The experimental results showed that the production volume of nitrogen oxides tended to increase and became close to linear as hydrogen was added to the diffusion pyrotechnic. This is because the relatively high temperature of heat insulation and fast combustion speed of hydrogen facilitated the production of thermal NOx. On the other hand, CO2 production tended to decrease as hydrogen was added to reduce the overall carbon ratio contained in the mixed diffusion flame of methane, methane-propane, and methane-ethane-propane. This means that the mixed fuel use of LNG-hydrogen in ships may potentially reduce emissions of CO2, a greenhouse gas.