• 제목/요약/키워드: High-pressure experiment

검색결과 984건 처리시간 0.028초

Influences of Mach Number and Flow Incidence on Aerodynamic Losses of Steam Turbine Blade

  • Yoo, Seok-Jae;Ng, Wing Fai Ng
    • Journal of Mechanical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.456-465
    • /
    • 2000
  • An experiment was conducted to investigate the aerodynamic losses of high pressure steam turbine nozzle (526A) subjected to a large range of incident angles ($-34^{\circ}\;to\;26^{\circ}$) and exit Mach numbers (0.6 and 1.15). Measurements included downstream Pitot probe traverses, upstream total pressure, and end wall static pressures. Flow visualization techniques such as shadowgraph and color oil flow visualization were performed to complement the measured data. When the exit Mach number for nozzles increased from 0.9 to 1.1 the total pressure loss coefficient increased by a factor of 7 as compared to the total pressure losses measured at subsonic conditions ($M_2<0.9$). For the range of incidence tested, the effect of flow incidence on the total pressure losses is less pronounced. Based on the shadowgraphs taken during the experiment, it' s believed that the large increase in losses at transonic conditions is due to strong shock/ boundary layer interaction that may lead to flow separation on the blade suction surface.

  • PDF

내압용기 모형의 설계, 제작 및 압력시험에 관한 연구 (Study on the Design, Manufacture, and Pressure Test of a Pressure Vessel Model)

  • 정태환;이재환;이종무;;;노인식
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.101-106
    • /
    • 2007
  • In this paper, the authors demonstrate a new idea to take the place of the real pressure vessel test, which should be carried out in a high pressure experiment unit before the real sea trial test. The idea is to make a pressure vessel model as a replica of the real pressure vessel test, which can reduce the cost of making a pressure vessel and large pressure experiment unit. The pressure vessel model was designedbased on linear-elastic, buckling equations and Finite Element Analysis. The manufactured pressure vessel model was investigated and monitored while the pressure test was being conducted. After the test, the result and the validity of the pressure vessel model as a replica of the real pressure vessel test was studied.

두 연속 덕트를 전파하는 압축파의 수치해석적 연구 (Numerical study of compression waves passing through two-continuous ducts)

  • 김희동;허남건
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.823-831
    • /
    • 1998
  • In order to investigate the impulsive noise at the exit of high-speed railway tunnel and the pressure transients inside the tunnel, numerical calculations using a Total Variation Dimishing difference scheme were applied to axisymmetric unsteady compressible flow field. Some compression wave forms were assumed to model the compression wave produced in real high-speed railway tunnel. The numerical data were extensively explored to analyze the peak over-pressure and maximum pressure gradient in the pressure wavefront. The effect of the distance and cross-sectional area ratio between two-continuous ducts on the characteristics of the pressure waves were investigated. The peak over-pressure inside the second duct decreases for the distance and cross-sectional area ratio between two tunnels to increase. The peak over-pressure and maximum pressure gradient of the pressure wavefront inside the second duct increase as the maximum pressure gradient of initial compression wave increases. The present results were qualitatively well agreed with the results of the previous shock tube experiment.

고압가스 충전용 밸브 개발(드레인밸브 기능포함) (Development of Rechargeable High-pressure Gas Valve (Capability of Valve to Drainage))

  • 권경옥
    • 한국가스학회지
    • /
    • 제12권3호
    • /
    • pp.64-67
    • /
    • 2008
  • 초고압 공압용 패킹을 적용한 밸브를 개발하여 밸브의 수명 및 기밀도를 높이고자 하였다. 밸브핸들 부위를 통하여 잔압을 제거할 수 있는 구조를 구현하여, 별도의 드레인밸브가 필요 없는 효과적인 밸브를 개발하였으며 특성은 밸브 팩킹을 특수한 형태로 가공하고, 기둥에 드레인 홀을 구성하여, 밸브가 열리거나, 닫힌 상태에 관계없이 드레인이 가능하도록 하였다.

  • PDF

고압 환경 하에서의 분무 분포 측정 (Spray Distribution Measurement at High Ambient Pressure)

  • 조성호;임지혁;윤영빈;최성만;한영민
    • 한국가시화정보학회지
    • /
    • 제6권1호
    • /
    • pp.59-65
    • /
    • 2008
  • Distribution of spray was measured. Optical Line Patternator (OLP) was used to measure the planar distribution of the spray from a swirl-coaxial type injector. Ambient pressure was varied and injection pressure was fixed in experiment. As ambient pressure increased, spray distribution was changed from hallow cone to solid cone shape, and spray angle was decreased. Limitation in measuring dense spray was found at high ambient pressure condition.

A comparing on the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle

  • Thawichsri, Kosart;nilnont, Wanich
    • International Journal of Advanced Culture Technology
    • /
    • 제3권2호
    • /
    • pp.58-66
    • /
    • 2015
  • This paper aims to compare the use of Centrifugal Turbine and Tesla Turbine in an application of Organic Rankine Cycle (ORC) Machine using Isopentane as working fluid expanding. The working fluid has boiling point below boiling water and works in low-temperature sources between $80-120^{\circ}C$ which can be produced from waste heat, solar-thermal energy and geothermal energy etc. The experiment on ORC machine reveals that the suitability of high pressure pump for working fluid has result on the efficiency of work. In addition, Thermodynamics theory on P-h diagram also presented the effect of heat sources' temperature and flow rate on any work. Thus, the study and design on ORC machine has to concern mainly on pressure pump, flow rate and optimized temperature. Result experiment and calculate ORC Machine using centrifugal Turbine efficiency better than Tesla turbine 30% but Tesla Turbine is cheaper and easily structure. Further study on the machine can be developed throughout the county due to its low cost and efficiency.

샌드위치형 레이돔의 전기적 성능개선 위한 성형압력 영향성 연구 (A Study on Effects of the Cure Pressure for the Improvement of the Electrical Performance of the Sandwich Type Radome)

  • 이상민;서현수;홍준표
    • 품질경영학회지
    • /
    • 제43권3호
    • /
    • pp.299-312
    • /
    • 2015
  • Purpose: This paper analyzes the phenomenon on the degradation of the electrical performance by the pressure in the manufacturing process of sandwich type radomes. Methods: This paper consists of two steps to analyze the relation between the electrical performance and the pressure. First, the thickness of the core of the flat panels which were fabricated with different pressure was measured with the microscope, and then the electrical performance of the flat panels was analyzed with simulation and experiment. Based on the results of the electrical performance and the measured thickness with respect to the flat panels, the relation between the electrical performance and the applied pressure in the manufacturing process was analyzed. Results: The simulated and measured results with respect to the flat panel shows that the high pressure results in the nonuniform thickness of the core, which is applied to the radome fabrication. As a result, the degradation of the electrical performance occurs because the unintended scattered field is generated as the electromagnetic wave transmits (or impinges upon) the radome. Furthermore, we observed that the electrical performance of both the flat panel and the radome got worse as the high pressure was applied. Conclusion: Through simulation and experiment, therefore, it is demonstrated that for the high pressure in the manufacturing process the nonuniform thickness of the core increases and results in the degradation of the electrical performance of the radome.

강한 압력 교란에 구속된 고압 액적의 연소 응답 (Responses of Droplet Evaporation to High-Pressure Oscillations)

  • 김성엽;윤웅섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1286-1291
    • /
    • 2004
  • In order for studying pressure-coupled dynamic responses of droplet vaporization, open-loop experiment of an isolated droplet vaporization exposed to pressure perturbations in stagnant gaseous environment is numerically conducted. Governing equations are solved for flow parameters at gas and liquid phases separately and thermodynamic parameters at the interfacial boundary are matched for problem closure. For high-pressure effects, vapor-liquid interfacial thermodynamics is rigorously treated. A series of parametric calculations in terms of mean pressure level and wave frequencies are carried out employing a n-pentane droplet in stagnant gaseous nitrogen. Results show that wave instability in view of pressure-coupled vaporization response seems more susceptible at higher pressures and higher wave frequencies. Mass evaporation rate responding to pressure waves is amplified with increase in pressure due to substantial reduction in latent heat of vaporization. Augmentation of perturbation frequency also enhances amplification due to the reduction of phase differences between pressure perturbation and surface temperature fluctuation.

  • PDF

사축식 액셜 피스톤 펌프의 압력맥동 감소 (Reduction in Pressure Ripples for a Bent-Axis Piston Pump)

  • 김경훈;손권;장주섭
    • 한국자동차공학회논문집
    • /
    • 제12권2호
    • /
    • pp.109-116
    • /
    • 2004
  • Bent-axis piston pump have been commonly used in hydraulic systems because of high pressure level, best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the bent-axis piston pump require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the bent-axis piston pump was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a parallel line could reduce the discharge pressure wave of the pump well. The analysis model of the bent-axis piston pump developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

입구형상에 따른 소형 사이클론의 성능 실험 (Experiment of small cyclone performance depending on the inlet type)

  • 김민하;허광수;설승윤
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1969-1974
    • /
    • 2004
  • The performance of small cyclone is analysed by an experiment for the purpose of developing a bag-less vacuum cleaner. For the high collection efficiency and low pressure loss cyclone, the effect of cyclone inlet feature must be well understood. Four types of the helical inlet are considered to compare with the normal tangential inlet, and also various inlet velocities are used to each inlet type. Based on the reference dimension, each type of inlet shows the changes of the grade efficiency and pressure loss which determine the cyclone quality. The results show that the helical inlet has the smaller cut-size but bigger pressure loss than the tangential inlet. And the degree of opening area influences factors of cyclone performance. As the inlet velocity is increased, the cut-size becomes smaller and the pressure loss becomes bigger of each cyclone. Further studies are required to understand the optimized helical inlet of cyclone.

  • PDF