• Title/Summary/Keyword: High-pressure experiment

Search Result 984, Processing Time 0.032 seconds

Failure Behavior of T-joint Pipe with Outer Local Wall Thinning under Internal Pressure (내압을 받는 외부 국부 감육 T-joint 배관의 파손거동)

  • Kim, Soo-Young;Nam, Ki-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.80-87
    • /
    • 2014
  • The pipelines are apt to erosion or corrosion because of the high-speed flow of water and steam with high temperatures or high pressures. This study was carried out a finite element analysis (FEA) and an experimental for the fracture behavior of T-joint pipes with local wall thinning under internal pressure. Local wall thinning was machined on the pipes in order to simulate erosion and corrosion of the metal. The configurations of the eroded area included an eroded ratio of d/t=0.80~0.963 and an eroded length of l=25 mm, 50 mm, and 102 mm. Three-dimensional elastic-plastic analyses were also carried out using FEA, which accurately simulates failure behaviors. In regards to the relationship between pressure and eroded, the criterion that indicates what can be used safely under operating pressure and design pressure were obtained from FEA. The FEA results were in relatively good agreement with that of the experiment.

Thermal-pressure loading effect on containment structure

  • Kwak, Hyo-Gyoung;Kwon, Yangsu
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.617-633
    • /
    • 2014
  • Because the elevated temperature degrades the mechanical properties of materials used in containments, the global behavior of containments subjected to the internal pressure under high temperature is remarkably different from that subjected to the internal pressure only. This paper concentrates on the nonlinear finite element analyses of the nuclear power plant containment structures, and the importance for the consideration of the elevated temperature effect has been emphasized because severe accident usually accompanies internal high pressure together with a high temperature increase. In addition to the consideration of nonlinear effects in the containment structure such as the tension stiffening and bond-slip effects, the change in material properties under elevated temperature is also taken into account. This paper, accordingly, focuses on the three-dimensional nonlinear analyses with thermal effects. Upon the comparison of experiment data with numerical results for the SNL 1/4 PCCV tested by internal pressure only, three-dimensional analyses for the same structure have been performed by considering internal pressure and temperature loadings designed for two kinds of severe accidents of Saturated Station Condition (SSC) and Station Black-out Scenario (SBO). Through the difference in the structural behavior of containment structures according to the addition of temperature loading, the importance of elevated temperature effect on the ultimate resisting capacity of PCCV has been emphasized.

A Study on the Flow Rate Performance of Plunger-Type High-Pressure Pump for Compression Ignition Engine Using DME as Fuel (DME를 연료로 하는 압축 착화 엔진 용 플런저식 고압펌프의 유량 성능 연구)

  • Jeong, Jaehee;Lee, Sejun;Yu, Donggyu;Lim, Ocktaeck
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.4
    • /
    • pp.1-8
    • /
    • 2022
  • DME, a clean fuel that is being studied as an alternative fuel for diesel engines, can reduce exhaust gas, which is the one of the crucial problems of diesel engines, and has a very high cetane number and high oxygen content. DME is a fuel has properties similar with LPG and can use the infrastructure of LPG. In this study, The target was to build a database of basic data on the mass flow rate discharged for the performance evaluation of the plunger-type high pressure pump. In this study, the mass flow rate of the DME plunger type high pressure pump was analyzed by changing the common rail pressure and the motor rotation speed. The experimental conditions were the common rail pressure was changed from 300 to 500 bar and the motor rotation speed was changed from 300 to 1000 rpm. In addition, basic mass flow data were constructed to high-pressure pumps for DME. As a result of the experiment, in both cases the mass flow rate was increased.

Comparison of the Contact Area, Maximum Pressure, Maximum Average Pressure and Maximum Force between Functional Insoles and General Insoles (기능성 인솔과 일반 인솔의 발에 대한 접촉 면적, 최대 압력, 최대 평균압력 및 최대 힘 비교)

  • Lee, Su-Kyoung
    • PNF and Movement
    • /
    • v.20 no.3
    • /
    • pp.431-441
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the changes in the contact area, maximum pressure, maximum mean pressure, and maximum force of functional insoles and general insoles when walking. Methods: Foot pressure was measured by the ignition of functional insoles and general insoles on Company N shoes. The foot pressure was measured using a precision pressure distribution meter (Pedar - X mobile system, Novel, Germany). Each insole sensor contained 99 independent cells and was inserted between the foot and the shoe. A wireless Bluetooth-type program was used to measure the pressure detected by the measuring insoles. In order to eliminate adaptation and fatigue caused by wearing the guide during the experiment, sufficient rest was taken between each experiment, and the wearing order was randomly selected. Results: Functional insole significantly increased the forefoot and midfoot (medial, lateral) (p<0.05), while total foot, forefoot, and rearfoot peak pressure significantly decreased (p < 0.05) compared to the general insole. Conclusion: In the functional insole, a high contact area was measured inside, even in the middle of the foot, leading to a proper change in foot pressure. It was confirmed that the contact area was reduced and dispersion occurred well. In addition, it was found that the maximum pressure in the front and back of the entire foot was reduced, so the weight pressure dispersion in the functional insole was evenly distributed, and the maximum average pressure change was similar.

The investigation of Diesel Spray Combustion in DME HCCI (DME 예혼합기를 분위기로 하는 디젤 분무의 연소에 관한 연구)

  • Lim, Ock-Taeck;Iida, Norimasa
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3329-3334
    • /
    • 2007
  • The purpose of the research is to investigate of diesel spray combustion for simultaneously reduce way NOx and PM. The pressure diesel injection were done into intermediates that are generated by very lean DME HCCI combustion using a RCM. The concentration of intermediate could not be directly measured; we estimated it by CHEMKIN calculation. DME HCCI characteristic is surveyed. Validations of the CHEMKIN calculation were confirmed pressure rise of an experiment and pressure rise of a calculation. Using a framing streak camera captured two dimensional spontaneous luminescence images from chemical species at low temperature reaction(LTR) and high temperature reaction (HTR). Also, the combustion events were observed by high-speed direct photography, the ignition and combustion were analyzed by the combustion chamber pressure profiles.

  • PDF

Static Characteristic and Dynamic Characteristic Experiment of First-stage Proportional Pressure Control Valve (1단 비례 압력제어밸브의 정특성 및 동특성 실험)

  • Jeong, Heon-Sul;Nam, Ji-Woo;Lim, Hyo-Joon;Jung, Seung-Wook;Han, Sung-Min
    • 유공압시스템학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.18-24
    • /
    • 2010
  • Because of the increasing demand on the high precision and high response of a machinery, electronic control valves are widely adopted at various application fields. This paper studies on the static characteristic of a first-stage proportional pressure control valve. At first an experimental apparatus including hyd. pump variable speed inverter, pressure and data aquisition system was setted up with the experimental apparatus, various tests such as P-Q-W test, hyd, pump, dynamic, static, frequency response test of the proportional valve was carride out and the results are discussed.

  • PDF

Oxide Layer Growth in High-Pressure Steam Oxidation (고압 수증기 내에서 산화막 형성에 관한 연구)

  • 박경희;안순의;구경완;왕진석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.735-738
    • /
    • 2000
  • This paper shows experimentally that oxide layer on the p-type Si-substrate can grow at low temperature(500$^{\circ}C$∼600$^{\circ}C$) using high pressure water vapor system. As the result of experiment, oxide layer growth rate is about 0.19${\AA}$/min at 500$^{\circ}C$, 0.43${\AA}$/min at 550$^{\circ}C$, 1.2${\AA}$/min at 600$^{\circ}C$ respectively. So, we know oxide layer growth follows reaction-controlled mechanism in given temperature range. Consequently, granting that oxide layer growth rate increases linearly to temperature over 600$^{\circ}C$, we can expect oxide growth rate is 5.2${\AA}$/min at 1000$^{\circ}C$. High pressure oxidation of silicon is particularly attractive for the thick oxidation of power MOSFET, because thermal oxide layers can grow at relatively low temperature in run times comparable to typical high-temperature, 1 atm conditions. For higher-temperature, high-pressure oxidation, the oxidation time is reduced significantly

  • PDF

Modeling of High Pressure Droplet Vaporization with Flash Phase Equilibrium Calculation (플래시 상평형 방법에 의한 고압 액적 기화 모델)

  • 이강원;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.65-69
    • /
    • 2002
  • Unsteady vaporization of a droplet quiescent in a high pressure environment are studied with emphasis placed oil the modeling of equilibrium at vapor-liquid interface. Complete set of conservation equations for liquid and gas phases is numerically time integrated. Vapor-liquid interfacial thermodynamics are solved by f]ash equilibrium calculation method. The model was proper]y validated with experiment and the improvement in the solution accuracy was made. Vaporization of n-pentane fuel droplet in nitrogen background gas is examined. Effects of ambient gas solubility, property variation, transient diffusion, and multicomponent transport on the droplet vaporization are investigated systematically. High-pressure effects on the droplet vaporization is examined and discussed.

  • PDF

Fan-shaped Spray Characteristics of High Pressure Slit Nozzle in a Gasoline Direct Injection Engine (가솔린 직접분사식 고압 슬릿 노즐의 팬형 분무 특성 고찰)

  • Song, Bhum-Keun;Kim, Chong-Min;Kang, Shin-Jae
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2239-2244
    • /
    • 2003
  • A new stratified charge combustion system has been introduced and developed for GDI engines. Before this new GDI system, the stratified mixture was formed by a high pressure swirl injector. But, the special feature of new system is employed of a thin fan-shaped fuel spray formed by a slit type nozzle. Also, this system has been adopted a shell-shaped piston cavity. We made high pressure gasoline injection system and investigated the fan-shaped spray characteristics such as spray tip penetration, spray angle, SMD and velocities of droplets using PDPA(Phase Doppler Particle Analyzer) system and spray visualization system to obtain the concept of the new design and the fundamental data for the next generation GDI system. The experiment was performed at the injection pressures of 5 and 9MPa under the atmospheric condition.

  • PDF

Study of Ejector System for cw High Power Chemical Lasers Operating (연속발진 고출력 화학레이저 구동용 이젝터 시스템 연구)

  • Kim, Se-Hoon;Jin, Jung-Kun;Kwon, Se-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1715-1719
    • /
    • 2004
  • An in-house supersonic ejector was designed to ensure low pressure and high speed scavenging of resonating cavity of chemical lasers. For given primary flow condition, 100g/s secondary mass flow rate was observed at the design pressure. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of diffuser at the secondary inlet further reduced diffuser upstream pressure to 1/4-1/5 relieving the local to the primary supply unit. In order to increase the secondary flow, we put two ejectors capable of removing 50g/s each of secondary flows together to deal with higher mass flow. Test of the parallel unit demonstrated the secondary flow rate was proportional to the numbers of individual units that were brought together. Additionally, flow calculations with a commercial code were carried out in every case of experiment and compared with results.

  • PDF