• 제목/요약/키워드: High-order modes

검색결과 321건 처리시간 0.032초

공동을 지나는 비정상 유동에 의한 소음 방사 해석 (Numerical Investigation of Sound Generation in the Flow Past a Cavity)

  • 허대영;이덕주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.104-109
    • /
    • 2000
  • The modes of oscillation and radiated acoustic fields of compressible flows over open cavities are investigated computationally. The compressible Navier-Stokes equations are solved for two-dimensional cavities with laminar boundary layers upstream. The high-order and high-resolution numerical schemes are used for the evaluation of spatial derivatives and the time integration. Physically correct numerical boundary conditions are implemented to produce time-accurate solutions in the whole computation domain. The computational domain is large enough to directly resolve a portion of the radiated acoutic field. The results show a transition from a shear layer mode, for shorter cavities and lower Mach numbers, to a wake mode for longer cavities and higher Mach numbers. The shear layer mode is well characterized by Rossiter modes and these oscillations lead to intense upstream acoustic radiation dominated by a single frequency. The wake mode is characterized instead by a large-scale vortex shedding. Acoustic radiation is more intense, with multiple frequencies present.

  • PDF

Enhanced spontaneous emissions from suprathermal populations in Kappa distributed plasmas

  • Kim, Sunjung
    • 천문학회보
    • /
    • 제43권1호
    • /
    • pp.56.3-56.3
    • /
    • 2018
  • The present study formulates the theory of spontaneously emitted electromagnetic fluctuations in magnetized plasmas containing particles with an anisotropic suparthermal (bi-Kappa) velocity distribution function. The formalism is general applying for an arbitrary wave vector orientation and wave polarization, and for any wave-frequency range. As specific applications, the high-frequency electromagnetic fluctuations emitted in the upper-hybrid and multiple harmonic electron cyclotron frequency range are evaluated. The fluctuations for low-frequency are also applied, which include the kinetic $Alfv\acute{e}n$, fast magnetosonic/whistler, kinetic slow mode, ion Bernstein cyclotron modes, and higher-order modes. The model predictions are confirmed by a comparison with particle-in-cell simulations. The study describes how energetic particles described by kappa velocity distribution functions influence the spectrum of high and low frequency fluctuations in magnetized plasmas. The new formalism provides quantitative analysis of naturally occurring electromagnetic fluctuations, and contribute to an understanding of the electromagnetic fluctuations observed in space plasmas, where kappa-distributed particles are ubiquitous.

  • PDF

고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구 (A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete)

  • 곽계환;박종건
    • 콘크리트학회논문집
    • /
    • 제11권5호
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

Fast Motion Estimation Algorithm for MPEG-4 to H.264 Transcoder

  • Han, Jong-Ki;Seo, Chan-Won
    • 한국통신학회논문지
    • /
    • 제33권6C호
    • /
    • pp.459-470
    • /
    • 2008
  • In this paper, we propose a fast ME (motion estimation) algorithm for MPEG-4 to H.264 Transcoder. Whereas 2 modes ($8{\times}8$, $16{\times}16$) are used for ME in MPEG-4 simple profile, ME using 7 modes is supported for further enhanced coding efficiency in H.264. The transcoding speed is affected dominantly by the computational complexity of encoder part in transcoder, where ME module of H.264 encoder has high complexity due to using 7 modes. In order to increase the speed of transcoding between MPEG-4 and H.264, we use 3 PMVs (predicted motion vectors) and the mode information of MBs (macroblocks) provided from the decoder part of transcoder. Since the proposed 3 PMVs are very close to an optimal motion vector, and we consider only some restricted modes according to the MB information transferred from decoder part, the proposed scheme can speed up the transcoding procedure without loss of image quality. We show experimental results which demonstrate the effectiveness of the proposed algorithm, where performance of our scheme is compared with that of the conventional fast algorithm for H.264.

A Hybrid CBPWM Scheme for Single-Phase Three-Level Converters

  • Wang, Shunliang;Song, Wensheng;Feng, Xiaoyun;Ding, Rongjun
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.480-489
    • /
    • 2016
  • A novel hybrid carrier-based pulse width modulation (CBPWM) scheme that combines unipolar and dipolar modulations is proposed for single-phase three-level rectifiers, which are widely applied in railway traction drive systems. The proposed CBPWM method can satisfy the volt-second balancing principle in the complete modulation index region through overmodulation compensation. The modulation scheme features two modulation modes: unipolar and dipolar. The operation range limits of these modulation modes can be modified by changing the separation coefficient. In comparison with the traditional unipolar CBPWM, the proposed hybrid CBPWM scheme can provide advantageous features, such as lower high-order harmonic distortion of the line current and better utilization of switching frequency. The separation coefficient value is optimized to achieve the maximum utilization of these advantages. The experimental results verify the feasibility and effectiveness of the proposed hybrid CBPWM scheme.

슬라이딩 커버의 신뢰성 시험 및 구조개선 연구 (A study on the Reliability Experiment and the Structural Improvement of Sliding Cover)

  • 송준엽;강재훈;김태형;김옥구
    • 한국정밀공학회지
    • /
    • 제22권7호
    • /
    • pp.146-154
    • /
    • 2005
  • Recently, the high-speed and intelligence technology of machine tools are developed for the high efficiency of productivity Under the operating condition from the high-speed of machine tools, the various failure modes can occur in core units of manufacturing system. Therefore it is for the reliability concept of machine tool to be required in a design level. And the above-stated technology must be accommodated in the feeding and spindle subsystem, etc those are the core units of machine tools. In this study, we are developed the test-bed of sliding cover (C-plate) in order to evaluating reliability and estimating failure modes of feeding subsystem under operating conditions. The reliability experiment using the developed test-bed and the additional structural analysis executed on single and double structure. We found out the weak parts of sliding cover and were able to predict a life cycle from the experiment results. In this study, we propose the new C-plate model with double link structure to apply the high-speed machine tool in the fundamental guideline.

진동특성을 고려한 공작기계 고속주축 개발 (Development of High Speed Machine Tool Spindle Regarding Vibration Characteristics)

  • 박보용
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.149-156
    • /
    • 1992
  • A method for designing high speed spindle is presented in order to enhance the machining accuracy in consideration of vibration characteristics. Experimetal evaluations of the spindle HS 430 as a prototype are made efficiently with the help of bending vibration modes for nonrotational and rotationalstate comparing with the commercial spindle V430. As a result the spindle of HS 430 shows the superior performance than that of V 430.

  • PDF

사출성형기의 고장모드 영향분석(FMEA)을 활용한 위험 우선순위 (Risk Priority Number using FMEA by the Plastic Moulding Machine)

  • 신운철;채종민
    • 한국안전학회지
    • /
    • 제30권5호
    • /
    • pp.108-113
    • /
    • 2015
  • Plastic injection moulding machine is widely used for many industrial field. It is classified into mandatory safety certification machinery in Industrial Safety and Health Act because of its high hazard. In order to prevent industrial accidents by plastic injection moulding machine, it is necessary for designer to identify hazardous factors and assess the failure modes to mitigate them. This study tabulates the failure modes of main parts of plastic injection moulding machine and how their failure has affect on the machine being considered. Failure Mode & Effect Analysis(FMEA) method has been used to assess the hazard on plastic injection moulding machine. Risk and risk priority number(RPN) has been calculated in order to estimate the hazard of failures using severity, probability and detection. Accidents caused by plastic injection moulding machine is compared with the RPN which was estimated by main regions such as injection unit, clamping unit, hydraulic and system units to find out the most dangerous region. As the results, the order of RPN is injection unit, clamping unit, hydraulic unit and system units. Barrel is the most dangerous part in the plastic injection moulding machine.

TRACKING FOR HIGH-ORDER DAMPING OF THIN BEAM OSCILLATION

  • Yoo, Wan-Suk;Lee, Jae-Wook;Kim, Hyun-Woo
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.984-989
    • /
    • 2008
  • An estimation of high-order damping in flexible multibody dynamic simulation is introduced in this paper. The suggested damping model based on the experimental modal analysis leads to more accurate correlation results comparing to the traditional linear damping model because it directly uses the modal parameters of each mode achieved from experiment even high frequency modes. The modal parameters until the 5th mode are extracted from the experimental modal testing of the flexible beam using a high speed camera. And using the measured damping ratio and natural frequency until the 5th mode, the generic damping model is constructed. Then, the ANCF (absolute Nodal Coordinate Formulation) simulation results are compared to experimental results until the 5th mode.

  • PDF

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.