• Title/Summary/Keyword: High-loading

Search Result 3,231, Processing Time 0.04 seconds

Assessment of whipping and springing on a large container vessel

  • Barhoumi, Mondher;Storhaug, Gaute
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.442-458
    • /
    • 2014
  • Wave induced vibrations increase the fatigue and extreme loading, but this is normally neglected in design. The industry view on this is changing. Wave induced vibrations are often divided into springing and whipping, and their relative contribution to fatigue and extreme loading varies depending on ship design. When it comes to displacement vessels, the contribution from whipping on fatigue and extreme loading is particularly high for certain container vessels. A large modern design container vessel with high bow flare angle and high service speed has been considered. The container vessel was equipped with a hull monitoring system from a recognized supplier of HMON systems. The vessel has been operating between Asia and Europe for a few years and valuable data has been collected. Also model tests have been carried out of this vessel to investigate fatigue and extreme loading, but model tests are often limited to head seas. For the full scale measurements, the correlation between stress data and wind data has been investigated. The wave and vibration damage are shown versus heading and Beaufort strength to indicate general trends. The wind data has also been compared to North Atlantic design environment. Even though it has been shown that the encountered wind data has been much less severe than in North Atlantic, the extreme loading defined by IACS URS11 is significantly exceeded when whipping is included. If whipping may contribute to collapse, then proper seamanship may be useful in order to limit the extreme loading. The vibration damage is also observed to be high from head to beam seas, and even present in stern seas, but fatigue damage in general is low on this East Asia to Europe trade.

Investigation of rate dependent shear bond properties of concrete masonry mortar joints under high-rate loading

  • John E. Hatfield;Genevieve L. Pezzola;John M. Hoemann;James S. Davidson
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.519-533
    • /
    • 2024
  • Many materials including cementitious concrete-type materials undergo material property changes during high-rate loading. There is a wealth of research regarding this phenomenon for concrete in compression and tension. However, there is minimal knowledge about how mortar material used in concrete masonry unit (CMU) construction behaves in high-rate shear loading. A series of experiments was conducted to examine the bond strength of mortar bonded to CMU units under high-rate shear loading. A novel experimental setup using a shock tube and dynamic ram were used to load specially constructed shear triplets in a double lap shear configuration with no pre-compression. The Finite Element Method was leveraged in conjunction with data from the experimental investigation to establish if the shear bond between concrete masonry units and mortar exhibits any rate dependency. An increase in shear bond strength was observed when loaded at a high strain rate. This data indicates that the CMU-mortar bond exhibits a rate dependent strength change and illustrates the need for further study of the CMU-mortar interface characteristics at high strain rates.

Characteristic of Fatigue Properties with Tension and Bending Loading Using High Strength Steel Wire (고강도 강선의 인장 및 회전굽힘 피로특성)

  • U, Byeong-Cheol;Kim, Sang-Su;Kim, Byeong-Geol;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.161-167
    • /
    • 2001
  • The overhead transmission wires operating both at warm temperature and tighten state for a long period of time in a power transmission plant are degraded by air pollution, wind, creep and slip between steel wire and aluminium conductor. The objective of this study is to investigate to investigate the characteristics of fatigue properties with tension and bending loading of a high carbon steel wire. The fatigue behaviors have been carried out by tension-tension, 4 points bending and 3 points bending loading. In the present study, a conventional fatigue strengths between 4 points bending and tension-tension fatigue were determined by Gerber, Sorderberg and Goodmans theory and we investigated S-N diagram for bending and tensile loading.

Behavior of High-Speed Rail Roadbed Reinforced by Geogrid under Cyclic Loading (지오그리드로 보강한 고속철도 노반의 거동 특성)

  • 신은철;김두환
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.2
    • /
    • pp.84-91
    • /
    • 2000
  • The general concept of reinforced roadbed in the high-speed railway is to cope with the soft ground for the bearing capacity and settlement of foundation soil. The cyclic plate load tests were performed to determine the behavior of reinforced ground with multiple layers of geogrid underlying by soft soil. With the test results, the bearing capacity ratio, elastic rebound ratio, subgrade modulus and the strain of geogrids under loading were investigated. Based on these plate load tests, laboratory model tests under cyclic loading were conducted to estimate the effect of geogrid reinforcement in particular for the high-speed rail roadbed. The permanent settlement and the behavior of earth pressure in reinforced roadbed subjected to a combination of static and dynamic loading are presented.

  • PDF

Study of the Film Thickness in the Elastohydrodynamic Lubrication of Circular Contact under the Dynamic Loading Condition with Multigrid Multilevel Method (동하중조건에서의 다중격자 다중차원법을 이용한 점접촉 탄성유체윤활 유막두께연구)

  • 장시열
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.218-223
    • /
    • 2001
  • Many research of elastohydrodynamic lubrication (EHL) has been performed under the condition of steady state loding. However, mechanical elements undergo severe high loads that are fluctuating in general. Conventional numerical method for the circular contact of EHL study has a difficulty in converging the film pressure and thickness especially in high load of steady state. In this work, multigrid multilevel method expels the convergence problem under the condition of high load and very stable convergence is obtained under the dynamic loading condition over 1.0GPa. Several results of dynamic loading condition are shown and compared with those of steady state condition.

  • PDF

Dynamic Compressive Deformation Characteristics of Brass at High Strain Rates (고변형률 압축 하중에서 활동(KS D 5101 C3605BD-F)의 동적 변형 거동 특성)

  • 이억섭;나경찬;김경준
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.142-147
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as high impact loading are required to provide appropriate safety assessment to varying dynamically leaded mechanical structures. The Split Hopkinson Pressure Bar(SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate ]ending conditions. In this paper, the dynamic deformation behavior of a brass under both high strain rate compressive loading conditions has been determined using the SHPB technique.

Transient Creep Strain of Ultra High Strength Concrete with Heating and Loading (가열 및 하중조건에 따른 초고강도콘크리트의 과도변형)

  • Choe, Gyeong-Choel;Kim, Gyu-Yong;Yoon, Min-Ho;Lee, Young-Wook;Hwang, Ui-Chul;Yoo, Jae-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.59-60
    • /
    • 2015
  • In this study, stress-strain, thermal expansion strain, total strain and high temperature creep strain of ultra-high-strength concrete with compressive strengths of 80, 130, and 180MPa were experimentally evaluated considering elevated temperature and loading condition. Also, transient creep strain has been calculated by using the results of experiment. Experimental coefficient K was proposed with application of non-steady state creep model. It is considered that the experimental results of this study could be baseline data for deformation behavior analysis of ultra-high-strength concrete.

  • PDF

Dynamic Compressive Creep of Extruded Ultra-High Molecular Weight Polyethylene

  • Lee, Kwon-Yong;David Pienkowski;Lee, Sungjae
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1332-1338
    • /
    • 2003
  • To estimate the true wear rate of polyethylene acetabular cups used in total hip arthroplasty, the dynamic compressive creep deformation of ultra-high molecular weight polyethylene (UHMWPE) was quantified as a function of time, load amplitude, and radial location of the specimen in the extruded rod stock. These data were also compared with the creep behavior of polyethylene observed under static loading. Total creep strains under dynamic loading were only 64%, 70%, and 61% of the total creep strains under static loading at the same maximum pressures of 2 MPa,4 MPa, and 8 MPa, respectively. Specimens cut from the periphery of the rod stock demonstrated more creep than those cut from the center when they were compressed in a direction parallel to the extrusion direction (vertical loading) whereas the opposite was observed when specimens were compressed in a direction perpendicular to the extrusion direction (transverse loading). These findings show that creep deformation of UHMWPE depends upon the orientation of the crystalline lamellae.

Finite Element Analysis of Thermal Fatigue Safety for a Heavy-Duty Diesel Engine (대형디젤엔진의 열적 피로안전도 분석을 위한 유한요소해석)

  • 조남효;이상업;이상규;이상헌
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.122-129
    • /
    • 2004
  • Finite element analysis was performed to analyze structural safety of a new heavy-duty direct injection diesel engine. A half section of the in-line 6-cylinder engine was selected as a computational domain. A mapping method was used to project heat transfer coefficients from CFD results of engine coolant flow onto the FE model. The accurate setting of thermal boundary condition on the FE model was expected to result in improved prediction of temperature, cylinder bore distortion, and stresses. Characteristics of high cycle fatigue were investigated by assuming the engine was operated under the following five loading conditions repeatedly; assembly force, assembly force with thermal loading, alternating maximum gas pressure loading at each cylinder combined with assembly force and thermal loading. Distribution of fatigue safety factor was calculated by using it Haigh diagram in which the maximum and the minimum stresses were selected from the five loading cases.

Nondestructive detection of crack density in ultra-high performance concrete using multiple ultrasound measurements: Evidence of microstructural change

  • Seungo Baek;Bada Lee;Jeong Hoon Rhee;Yejin Kim;Hyoeun Kim;Seung Kwan Hong;Goangseup Zi;Gun Kim;Tae Sup Yun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.399-407
    • /
    • 2024
  • This study nondestructively examined the evolution of crack density in ultra-high performance concrete (UHPC) upon cyclic loading. Uniaxial compression was repeatedly applied to the cylindrical specimens at levels corresponding to 32% and 53% of the maximum load-bearing capacity, each at a steady strain rate. At each stage, both P-wave and S-wave velocities were measured in the absence of the applied load. In particular, the continuous monitoring of P-wave velocity from the first loading prior to the second loading allowed real-time observation of the strengthening effect during loading and the recovery effect afterwards. Increasing the number of cycles resulted in the reduction of both elastic wave velocities and Young's modulus, along with a slight rise in Poisson's ratio in both tested cases. The computed crack density showed a monotonically increasing trend with repeated loading, more significant at 53% than at 32% loading. Furthermore, the spatial distribution of the crack density along the height was achieved, validating the directional dependency of microcracking development. This study demonstrated the capability of the crack density to capture the evolution of microcracks in UHPC under cyclic loading condition, as an early-stage damage indicator.