• Title/Summary/Keyword: High-heeled shoes

Search Result 45, Processing Time 0.021 seconds

Acute Changes in Fascicle Behavior and Electromyographic Activity of the Medial Gastrocnemius during Walking in High Heeled Shoes

  • Kim, Jin-Sun;Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.135-142
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the acute effect of walking on high heels on the behavior of fascicle length and activation of the lower limb muscles. Methods: Twelve healthy inexperienced high heel wearers (age: $23.1{\pm}2.0yr$, height: $162.4{\pm}4.9cm$, weight: $54.4{\pm}8.5kg$) participated in this study. They walked in high heels (7 cm) and barefoot on a treadmill at their preferred speed. During the gait analysis, the lower limb joint kinematics were obtained using a motion analysis system. In addition, the changes in fascicle length and the level of activation of the medial gastrocnemius (MG) were simultaneously monitored using a real-time ultrasound imaging technique and surface electromyography, respectively. Results: The results of this study show that the MG fascicle operates at a significantly shorter length in high heel walking ($37.64{\pm}8.59mm$ to $43.99{\pm}8.66mm$) in comparison with barefoot walking ($48.26{\pm}9.02mm$ to $53.99{\pm}8.54mm$) (p < .05). In addition, the MG fascicle underwent lengthening during high heel walking with relatively low muscle activation while it remained isometric during barefoot walking with relatively high muscle activation. Conclusion: Wearing high heels alters the operating range of the MG fascicle length and the pattern of muscle activation, suggesting that prolonged wearing of high heels might induce structural alterations of the MG that, in turn, hinder normal functioning of the MG muscle during walking.

Effect of heel Heights of shoe on Muscle Activation of Lower Extremity on the Rocking Surface in older Women (흔들림이 있는 표면에서 여성 노인의 신발 굽 높이가 하지 근육 활성도에 미치는 영향)

  • Kim, Kyoung;Cho, Yong-Ho;Cha, Yong-Jun;Song, Byung-Seop
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.316-322
    • /
    • 2008
  • The purpose of this study was to investigate muscle activation of lower extremity such as rectus femoris, tibialis anterior and soleus according to 0cm(bare foot), 4cm and 7cm heel height of shoe on the rocking surface in older women. 20 older women who did not have any lower musculoskeletal and neurological disorders in the past were participated in this study. Each subject was standing for 15 seconds on the level 8 of Biodex Stability System (BSS) while wearing 4cm and 7cm heel height shoes including bare foot. Electromyography was used to measure muscle activation of lower extremity, and the muscle activation was expressed as a percentage of maximal voluntary isometric contraction (% MVIC). We measured % MVIC of three muscles during 5 seconds except for the first 5 seconds and last 5 seconds. SPSS 12.0 program was used for this study. Repeated one-way analysis of variance(ANOVA) was performed to compare the significant difference among the muscles of lower extremities according to heel heights of shoe on the rocking plate. % MVIC of each muscle such as rectus femoris, tibialis anterior and soleus regarding heel heights of shoe had statistically significant differences (p<0.05). The results of contrast test were as follows; 1) % MVIC of rectus femoris had significant differences between barefoot and 4cm, and barefoot and 7cm. 2) % MVIC of tibialis anterior had significant differences between barefoot and 4cm, barefoot and 7cm, and 4cm and 7cm. 3) % MVIC of soleus had significant differences between barefoot and 7cm, 4cm and 7cm. The results indicate that all commonly responsive muscle on the conditions of barefoot, 4cm, and 7cm shoe height on the rcoking surface is tibialis anterior muscle. We found out that the more heels of shoe high, the more muscle activation increases. High-heeled shoes above 7cm remarkably increase the muscle activation of lower extremity and may result in muscle fatigue. Thus, these shoes may summate risk factors of falls in older women. We can acknowledge that the heels above 4 cm affect each muscle activation in lower extremity on the rocking surface.

Effect of Heel Height and Speed on Gait, and the Relationship Among the Factors and Gait Variables

  • Park, Sumin;Park, Jaeheung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.39-52
    • /
    • 2016
  • Objective: This paper investigates gait changes according to different heel heights and speeds, and the interaction between the effects of the heel height and the speed during walking on stride parameters and joint angles. Furthermore, the relationship among heel height, speed and gait variables is investigated using linear regression. Background: Gait changes by heel height or speed have been studied respectively, but has not been reported whether there is an interaction effect between heel height and speed. It would be necessary to understand how gait changes when a person wears heels in different heights at various speeds, for example, high-heeled walking at fast speed, since it may cause unusual gait patterns and musculoskeletal disorders. Method: Ten females were asked to walk at five fixed cadences (94, 106, 118, 130 and 142 steps/min.) wearing three shoes with different heel heights (1, 5.4 and 9.8cm). Nineteen gait variables were analyzed for stride parameters and joint angles using two-way repeated measure analysis of variance and regression analysis. Results: Both heel height and speed affect movement of ankle, knee, spine and elbow joint, as well as stride length and Double/Single support time ratio. However, there is no significant interaction effect between heel height and speed. The regression result shows linear relationships of gait variables with heel height and speed. Conclusion: Heel height and speed independently affect stride parameters and joint angles without a significant interaction, so the gait variables are linearly amplified or diminished by the two factors. Application: Walking in high heels at fast speed should be careful for musculoskeletal disorders, since the amplified movement of knee and spine joint can lead to increased moment. Also, the result might give insight for animators or engineers to generate walking motion with high heels at various speeds.

Effect of Shoe Heel Height on Vastus Medialis and Vastus Lateralis Electromyographic Activity During Stair Ascending and Descending (신발 뒤굽 높이가 계단 올라가기 및 내려오기 동안 내측광근과 외측광근의 근 활성도에 미치는 영향)

  • Oh, Duck-Won;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.16 no.3
    • /
    • pp.24-31
    • /
    • 2009
  • This study aimed to investigate the effect of differing heel heights on the electromyographic (EMG) activity in vastus medialis (VM) and vastus lateralis (VL) during stair ascending and descending activities. A total of 26 healthy women volunteered to perform stair-ascending and stair-descending tasks with 3 heel heights: barefoot, 3 cm, and 7 cm. The EMG activities of the VM and VL were recorded during the tasks. During the stair ascending and descending tasks, the EMG activities of both VM and VL significantly changed with differing the heel heights (p<.05). Moreover, the EMG activities of VM and VL during the stair ascending task were significantly higher than the corresponding values during the stair-descending task (p<.05). However, there were no significant differences between the VM:VL EMG ratios for the 3 heel heights (p>.05). The VM:VL EMG ratios between the 2 tasks differed significantly in the 7 cm high heel condition (p<.05). Despite an increase in the EMG activities in both VM and VL during stair ascending and descending tasks, there was no change in the relative EMG intensities of VM and VL, which was measured by calculating the VM:VL ratio this result indicates that no VM:VL imbalances were elicited. The relative EMG intensities of VM and VL during stair descent were lower than the corresponding values during the ascent, suggesting that VM and VL may show an imbalance in the eccentric activation during the weight-acceptance phase. This study provides useful information that will facilitate future research on how heel height affects muscle activity around the knee joint.

  • PDF

Effects of Shoe Heel Height on Walking Velocity and Electromyographic Activities of Lower Extremity Muscles During Short- and Long-Distance Walking in Young Females (젊은 여성에서 단거리 및 장거리 보행 시 신발 뒤굽 높이가 보행 속도와 다리 근육의 근활성도에 미치는 영향)

  • Oh, Duck-won
    • Physical Therapy Korea
    • /
    • v.26 no.2
    • /
    • pp.16-23
    • /
    • 2019
  • Background: High-heeled shoes can change spinal alignment and feet movement, which leads to muscle fatigue and discomfort in lumbopelvic region, legs, and feet while walking. Objects: This study aimed to identify the effects of different shoe heel heights on the walking velocity and electromyographic (EMG) activities of the lower leg muscles during short- and long-distance walking in young females. Methods: Fifteen young females were recruited in this study. The experiments were performed with the following two different shoe heel heights: 0 cm and 7 cm. All participants underwent an electromyographic procedure to measure the activities and fatigue levels of the tibialis anterior (TA), medial gastrocnemius (MG), rectus femoris (RF), and hamstring muscles with each heel height during both short- and long-distance walking. The walking velocities were measured using the short-distance (10-m walk) and long-distance (6-min walk) walking tests. Results: Significant interaction effects were found between heel height and walking distance conditions for the EMG activities and fatigue levels of TA and MG muscles, and walking velocity (p<.05). The walking velocity and activities of the TA, MG, and RF muscles appeared to be significantly different between the 0 cm and 7 cm heel heights during both short- and long-distance walking (p<.05). Significant difference in the fatigue level of the MG muscle were found between the 0 cm and 7 cm heel heights during long-distance walking. In addition, walking velocity and the fatigue level of the MG muscle at the 7 cm heel height revealed significant differences in the comparison of short- and long-distance walking (p<.05). Conclusion: These findings indicate that higher shoe heel height leads to a decrease in the walking velocity and an increase in the activity and fatigue level of the lower leg muscles, particularly during long-distance walking.