• Title/Summary/Keyword: High-gain antenna

Search Result 403, Processing Time 0.034 seconds

The Design of a K-Band 4$\times$4 Microstrip Patch Array Antennas with High Directitvity (고지향성 구현을 갖는 K-밴드 4$\times$4 마이크로스트립 패치 어레이 안테나의 설계)

  • Lee, Ha-Young;Kim, Hyeong-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.161-166
    • /
    • 2007
  • In this paper, two 4$\times$4 rectangular patch array antennas operating at 20 GHz are implemented for the satellite communication. The sixteen patch antennas and microstrip feeding line are printed on a single-layered substrate. The design goal is to achieve high directivity and gain by optimizing design parameters through permutations in element spacing. The spacing between the array elements is chosen to be 0.736$\lambda$. Numerical simulation results indicate that the HPBW(Half-Power Beam Width) of the 4$\times$4 patch array antenna is 18.78 degrees in the E-plane and 18.48 degrees in the H-plane with a gain of 17.18 dBi. Numerical simulations of a 4$\times$4 recessed patch array antenna yield a HPBW of 18.71 degrees in the E-plane and 17.82 degrees in the H-plane with a gain of 19.43 dBi.

A Study on the Log-periodic Loop Antenna with the Parasitic Elements (무급전 소자를 갖는 Log-periodic 루프안테나에 관한 연구)

  • 최학근;박정기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.5
    • /
    • pp.444-452
    • /
    • 1988
  • The LP(Log-periodic) type antenna composed of the cross fed and parasitic loop elements has been proposed for a high gain and broadband characteristics. This antenna has been analyzed by using moment method, and current distribution, input impedence, power gain, and radiation patterns has been calculated and compared with LPDA. It was found to have high gain, broadband characteristics, and similiar patterns for E and H plane against LPDA.

  • PDF

Internal GPS Antenna for Mobile Phone (휴대단말기 내장형 GPS 안테나)

  • Hwang, Jae-Ho
    • Journal of Advanced Navigation Technology
    • /
    • v.6 no.2
    • /
    • pp.113-118
    • /
    • 2002
  • In this paper, an internal GPS antenna for mobile phones is designed and fabricated. For the miniaturization of the antenna, high permittivity dielectric substrate((${\varepsilon}_r$=90) and small ground plane ($13mm{\times}13mm$) are used. To increase the receive gain, the antenna is composed with LNA(Low Noise Amplifier). Results of the manufactured antenna($13mm{\times}13mm{\times}8mm$) show that the maximum antenna gain is about 12 dBi, the axial ratio is less than 3 dB, and the current consumption of LNA is less than 4 mA.

  • PDF

A Dual-Band Gap-Filler Antenna Design with a Phi-Shaped Slot

  • Park, Sang Yong;Park, Jong Kweon
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.111-114
    • /
    • 2015
  • In this paper, we have proposed dual-band Phi-shaped slot gap filler antenna for satellite internet service applications. Some properties of the antenna such as return loss, radiation pattern, and gain have been simulated and measured. The proposed antenna has a Phi-shaped slot on the circular patch and is fabricated on the TLX-9 substrate. The radius of the circular patch is 25 mm, and it has a coaxial feeding structure. The dual-band Phi-shaped slot gap filler antenna has high-gain, small-size, simple-structure, and good radiation patterns at each band. The operating frequency band can be tuned by adjusting the length AL and FL of the Phi-shaped slot.

A Study on Ku-band Antenna for Mounting on UAV (무인 항공기 탑재용 Ku대역 안테나에 관한 연구)

  • Park, Jin-Woo;Ryu, Ji-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.50-56
    • /
    • 2014
  • In this paper, we proposed a Ku-band antenna that can be mounted on UAV. A proposed antenna structure has small size and light weight. It is considered long distance communication environment(LOS) and equipped UAV. Proposed antenna is designed $16{\times}2$ aperture coupled microstrip patch array antenna for high gain characteristics. In the measurement results, VSWR is less than 1.5 and the gain is over 21dBi in the bandwidth. Mechanical specifications of antenna assembly are ${\phi}250{\times}200mm$ of size and 3kg of weight.

Active GNSS Antenna Implemented with Two-Stage LNA on High Permittivity Substrate

  • Go, Jong-Gyu;Chung, Jae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2004-2010
    • /
    • 2018
  • We propose a small active antenna to receive Global Navigation Satellite System (GNSS) signals, i.e., Global Positioning System (GPS) L1 (1,575MHz) and Russian Global Navigation Satellite System (GLONASS) L1 (1,600 MHz) signals. A two-stage low-noise amplifier (LNA) with more than 27 dB gain is implemented in the bottom layer of a three-layer antenna package. In addition, a hybrid coupler is used to combine signals from pair of proximately coupled orthogonal feeds with $90^{\circ}$ phase difference to achieve the circular polarization (CP) characteristic. Three layers of high permittivity (${\varepsilon}_r=10$) substrates are stacked and effectively integrated to have a small dimension of $64mm{\times}64mm{\times}7.42mm$ (including both circuit and antenna). The reflection coefficient of the fabricated antenna at the target frequency is below -10 dB, the measured antenna gain is above 26 dBic and the measured noise figure is less than 1.4 dB.

A Design of stacked bow-tie antenna for broadband characteristics (광대역 특성을 가지는 적층 구조의 Bow-Tie 안테나 설계)

  • Kim, Jin;Choi, Sung-Yeul;Park, Kyung-Su;Lee, Hee-Bok;Ko, Young-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.497-500
    • /
    • 2000
  • There are many researches to increase bandwidth of the microstrip patch antenna for wireless LAN. In spite of broad bandwidth, Bow-Tie microstrip patch antenna, broadband microstrip patch antenna, has disadvantages that are low gain and big size. In this paper, stacked Bow-Tie microstrip patch antenna for wireless LAN is designed in 5.725∼5.825㎓ band. This antenna has characteristics that are broadband bandwidth, high gain and small size compared with microstrip patch antenna. In simulated results, the return loss is -34.2㏈ at 5.78㎓ and bandwidth is 11.345% for VSWR 2:1 and 7.75% for VSWR 1.5:1. In measured results, the return loss is -38.45㏈ at 5.78㎓ and bandwidth is 13% for VSWR 2:1 and 5.6% for VSWR 1.5:1. It has 59.37$^{\circ}$-3㏈ beam width and 6.5㏈ gain.

  • PDF

Corporate-Series Fed Microstrip Array Antenna with Yagi Elements for 5G

  • Kim, Geun-Sik;Choi, Dong-You
    • Journal of information and communication convergence engineering
    • /
    • v.18 no.3
    • /
    • pp.162-166
    • /
    • 2020
  • The present paper presents an array antenna of a microstrip patch for 5G applications. Four rectangular microstrip patch elements are arranged in parallel and series to form an array antenna. Two insets are made on both sides of each patch element to achieve a wide frequency bandwidth of 23.97-31.60 GHz. To attain a high gain and wider bandwidth, the microstrip patch antenna is fed using series and corporate feeding networks. Further, three director elements on top of the top-most patch elements, and one reflector element at the open end of each patch element, are added. The addition of the Yagi elements improved the overall gain and acquired a higher radiation efficiency throughout the operating frequency bandwidth, with the array antenna achieving a maximum peak gain of 8.7 dB. The proposed antenna is built on a low-loss and low-cost substrate of FR4-eproxy. The proposed antenna design with a simple structure is suitable for Internet of Things and 5G applications.

Development of UWB Sinuous Antenna with Dielectric Lens for 3~6 GHz Band Application (유전체 렌즈를 가진 3~6GHz대용 UWB 시뉴어스 안테나 개발)

  • Lee, Dong Real
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Recently, Impulse radars using UWB technologies are widely use for measuring distance, or for transmitting uncompressed high resolution videos. However, since the UWB band spans over octave bands, it is not easy to design such a system. Wide band impedance matching is required for antennas and other RF area. In this study, we designed and fabricated sinuous antenna for 3~6 GHz octave band application. We also designed and attached a dielectric lens to improved the directional gain of the antenna. The gain of the antenna was 6~10 dBi. The dielectric lens attached sinuous antenna was used to transmit HD video data. The maximum reach distance was 90 meter with 10mW power.

The Characteristics Analysis of Low Profile Meander 2-Layer Monopole Antenna (소형 미앤더 2-층 모노폴 안테나의 특성분석)

  • Jang, Yong-Woong;Lee, Sang-Woo;Shin, Ho-Sub
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.934-941
    • /
    • 2014
  • In this paper, we present a low profile 2-layered meander built-in monopole antenna for portable RFID reader using FDTD(Finite Difference Time Domain) method. The input impedance, return loss, and VSWR in the frequency domain are calculated by Fourier transforming the time domain results. The double meander 2-layer structure is used to enhance the impedance matching and increase the antenna gain. The measured bandwidth of the antenna is 0.895 GHz ~ 0.930 GHz for a S11 of less than -10dB. The measured peak gain of proposed low profile RFID built-in antenna is 2.3 dBi. And the proposed built-in antenna for portable RFID reader can offers relatively wide-bandwidth and high-gain characteristics, in respectively. Experimental data for the return loss and the gain of the antenna are also presented, and they are relatively in good agreement with the FDTD results. This antenna can be also applied to mobile communication field, energy fields, RFID, and home-network operations, broadcasting, and other low profile mobile systems.