• 제목/요약/키워드: High-fidelity Simulation

검색결과 152건 처리시간 0.025초

Flight Dynamics Analyses of a Propeller-Driven Airplane (II): Building a High-Fidelity Mathematical Model and Applications

  • Kim, Chang-Joo;Kim, Sang Ho;Park, TaeSan;Park, Soo Hyung;Lee, Jae Woo;Ko, Joon Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권4호
    • /
    • pp.356-365
    • /
    • 2014
  • This paper is the second in a series and aims to build a high-fidelity mathematical model for a propeller-driven airplane using the propeller's aerodynamics and inertial models, as developed in the first paper. It focuses on aerodynamic models for the fuselage, the main wing, and the stabilizers under the influence of the wake trailed from the propeller. For this, application of the vortex lattice method is proposed to reflect the propeller's wake effect on those aerodynamic surfaces. By considering the maneuvering flight states and the flow field generated by the propeller wake, the induced velocity at any point on the aerodynamic surfaces can be computed for general flight conditions. Thus, strip theory is well suited to predict the distribution of air loads over wing components and the viscous flow effect can be duly considered using the 2D aerodynamic coefficients for the airfoils used in each wing. These approaches are implemented in building a high-fidelity mathematical model for a propeller-driven airplane. Flight dynamic analysis modules for the trim, linearization, and simulation analyses were developed using the proposed techniques. The flight test results for a series of maneuvering flights with a scaled model were used for comparison with those obtained using the flight dynamics analysis modules to validate the usefulness of the present approaches. The resulting good correlations between the two data sets demonstrate that the flight characteristics of the propeller-driven airplane can be analyzed effectively through the integrated framework with the propeller and airframe aerodynamic models proposed in this study.

미세성형공정에서의 폴리머 레올로지의 정량화 (Quantitative rheology of polymers in high resolution structuring)

  • 김병희;김헌영;김호;김광순;강신일
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1036-1042
    • /
    • 2003
  • The hot embossing process has been mentioned as one of major nanoreplication techniques. This is due to its simple process, low cost, high replication fidelity and relatively high throughput. As the initial step of quantitating the embossing process , simple parametric study about embossing time have been carried out using high-resolution masters which patterned by the DRIE process and laser machining. Under the various embossing time, the viscous flow of thin PMMA films into microcavities during compression force has been investigated. Also, a study about simulating the viscous flow during embossing process has planned and continuum scale FDM analysis was applied on this simulation. With currently available test data and condition, simple FDM analysis using FLOW3D was made attempt to match simulation and experiment.

  • PDF

연소기 개발에서 시뮬레이션 기술의 활용 (Application of non-reacting and reacting flow simulation for combustor development)

  • 정승채;양시원;김신현;박희호;안철주;윤삼손
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.123-126
    • /
    • 2013
  • Combustor development requires high fidelity simulation capable of predicting recirculation zone (RZ), temperature field, and pollutant emission. Swirling flow is widely used in combustor for its benefits in efficient mixing and flame stabilization by RZ. Large eddy simulation (LES) is used to calculate swirling flow in an expanding pipe [1], and shows higher accuracy than RANS. Reactive flow modeling using LES and flamelet model is validated with experiments by Barlow et al. [4] and Masri et al. [3]. Finally, heat transfer simulation of Samsung Techwin's combustor liner is presented.

  • PDF

핫엠보싱 공정에서의 미세 패턴 성형에 관한 연구 (Study of nano patterning rheology in hot embossing process)

  • 김호;김광순;김헌영;김병희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.371-376
    • /
    • 2003
  • The hot embossing process has been mentioned as one of major nanoreplication techniques. This is due to its simple process, low cost, high replication fidelity and relatively high throughput. As the initial step of quantitating the embossing process, simple parametric study about embossing time have been carried out using high-resolution masters which patterned by the DRIE process and laser machining. Under the various embossing time, the viscous flow of thin PMMA films into microcavities during Compression force has been investigated. Also, a study about simulating the viscous flow during embossing process has planned and continuum scale FDM analysis was applied on this simulation. With currently available test data and condition, simple FDM analysis using FLOW3D was made attempt to match simulation and experiment.

  • PDF

High fidelity transient solver in STREAM based on multigroup coarse-mesh finite difference method

  • Anisur Rahman;Hyun Chul Lee;Deokjung Lee
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3301-3312
    • /
    • 2023
  • This study incorporates a high-fidelity transient analysis solver based on multigroup CMFD in the MOC code STREAM. Transport modeling with heterogeneous geometries of the reactor core increases computational cost in terms of memory and time, whereas the multigroup CMFD reduces the computational cost. The reactor condition does not change at every time step, which is a vital point for the utilization of CMFD. CMFD correction factors are updated from the transport solution whenever the reactor core condition changes, and the simulation continues until the end. The transport solution is adjusted once CMFD achieves the solution. The flux-weighted method is used for rod decusping to update the partially inserted control rod cell material, which maintains the solution's stability. A smaller time-step size is needed to obtain an accurate solution, which increases the computational cost. The adaptive step-size control algorithm is robust for controlling the time step size. This algorithm is based on local errors and has the potential capability to accept or reject the solution. Several numerical problems are selected to analyze the performance and numerical accuracy of parallel computing, rod decusping, and adaptive time step control. Lastly, a typical pressurized LWR was chosen to study the rod-ejection accident.

Need for Accurate Initial Conditions to Simulate Flexible Structures in Motion

  • Woo, Nelson;Ross, Brant;West, Ryan
    • 대한기계학회논문집 C: 기술과 교육
    • /
    • 제3권2호
    • /
    • pp.97-106
    • /
    • 2015
  • Flexible structures are often important components of mechanical assemblies in motion. A flexible structure sometimes must go through assembly steps that cause it to be in a pre-stressed condition when in the starting position for operation. A virtual prototype of the assembly must also bring the model of the flexible structure into the same pre-stressed condition in order to obtain accurate simulation results. This case study is presented regarding the simulation of a constant velocity joint, with a focus on the flexible boot. The case study demonstrates that careful definition of the initial conditions of the boot and flexible body contacts yields high-fidelity simulation results.

석탄 IGCC 다이내믹 시뮬레이션에 관한 연구 (Study on the Dynamic Simulation for an Integrated Coal Gasification Combined Cycle)

  • 주용진;김시문;이민철;김미영
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.106.2-106.2
    • /
    • 2010
  • IGCC (Integrated Gasification Combined Cycle) plants are among the most advanced and effective systems for electric energy generation. From a control perspective, IGCC plants represent a significant challenge: complex reactions, highly integrated control to simultaneously satisfy production, controllability, operability and environmental objectives. While all these requirements seem clearly to demand a multivatiable, model predictive approach, not many applications can be easily found in the literature. This paper describes the IGCC dynamic simulation that is capable of simulating plant startup, shutdown, normal, and abnormal operation and engineering studies. This high fidelity dynamic models contain the detailed process design data to produce realistic responses to process operation and upset. And the simulation is used by engineers to evaluate the transient performance and produce graphical information indicating the response of the process under study conditions.

  • PDF

환자 안전 역량을 위한 수혈 시뮬레이션에서 간호학부생의 오류 발생과 복구 수준 (Nursing Students' Error and Recovery in Transfusion Simulation for Safety Competency)

  • 김은정
    • 기본간호학회지
    • /
    • 제22권2호
    • /
    • pp.180-189
    • /
    • 2015
  • Purpose: The purpose of this study was to identify the types of errors that occurred and were recovered in a simulated transfusion scenario by nursing students. Methods: Twenty-eight teams of a total of 89 nursing students participated in a transfusion simulation using a high fidelity simulator. Data were collected by observing rule based errors and built in errors recovered according to the framework of Eindhoven model. Reflective journaling was used to identify perceived safety-threatening errors and commitment to improvement. Data were analyzed using descriptive statistics. Results: All teams committed the rule based errors in the scenario. The most common errors occurred in the coordination category related to communication with physician. Most of students perceived the transfusion reaction as a safety-threatening error. Conclusion: The findings indicate that students lack patient safety competence. The simulation training to decrease errors and improve safe practice provides nursing students with an effective strategy to develop patient safety competence.

설계용 S/W를 활용한 소형비행기의 비행특성 매개변수 추출과 주관적 시험평가방식에 관한 연구 (Derivation and Validation of Aerodynamic Parameters of Small Airplanes Using Design Software and Subjective Tests)

  • 이숙경;공지영;최유환;윤석준
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2004년도 춘계학술대회 논문집
    • /
    • pp.142-147
    • /
    • 2004
  • It is very difficult to acquire high-fidelity flight test data for small airplanes such as typical unmanned aerial vehicles because MEMS-type small sensors used in the tests do not present reliable data in general. Besides, it is not practical to conduct expensive flight tests for low-cost small airplanes in order to simulate their flight characteristics. A practical approach to obtain acceptable flight data, including stability and control derivatives and data of weight and balance, is proposed in this study. Aircraft design software such as Darcorp's AAA is used to generate aerodynamic data for small airplanes, and moments of inertia are calculated using CATIA, structural design software. These flight data from simulation software are evaluated subjectively and tailored using simulation flight by experienced pilots, based on the certified procedures in FAA AC 120-45A and 40B, which are used for manned airplane simulators.

  • PDF

Supersonic Combustion Modeling and Simulation for Scramjets

  • Ladeinde, Foluso
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2015년도 제51회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.23-24
    • /
    • 2015
  • In this talk, we will present what we believe is the state-of-the-art of the numerical modeling and simulation of the combustion processes as they relate to typical scramjet engines. The free-stream Mach number is hypersonic, but the speed is not sufficiently decelerated at the inlet/isolator, as in ramjets, so that combustion takes place under supersonic conditions. This creates some difficulties for most turbulence-combustion models. We delve into the details of these problems, by discussing the software programs that have a long track record for scramjet combustion simulation; with a focus on the accuracy of the baseline numerical methods used, the turbulence modeling/simulation approach, the comparative fidelity of the turbulence-combustion interaction models, ability to simulate premixed/non-premixed/partially-premixed, quenching/re-ignition capabilities, the numerical spark-plug method, Damkholer number regimes supported, and the effects of variable Prandtl, Schmidt, and Lewis numbers. Validation results from high-speed and low-speed combustion applications will also be presented.

  • PDF