• 제목/요약/키워드: High-fat-diet mouse model

검색결과 83건 처리시간 0.02초

신국(神麯) 투여가 비만형 제 2형 당뇨병 동물모델의 대사인자와 지방조직 염증반응에 미치는 영향 (The Effects in Metabolism and Adipose Tissue Inflammation Induced by the Massa Medicata Fermentata on Obese Type 2 Diabetes Mouse Model)

  • 백선호;한수련;권오준;안영민;안세영;이병철
    • 대한한의학회지
    • /
    • 제33권3호
    • /
    • pp.33-45
    • /
    • 2012
  • Objectives: Recent data have revealed that the plasma concentration of inflammatory mediators is increased in the insulin-resistant states of obesity and type 2 diabetes. The purpose of this study was to investigate the antidiabetic and anti-obesity effect of Massa Medicata Fermentata on obese type 2 diabetes mice. Methods: In order to examine the effects of Massa Medicata Fermentata, obese type 2 diabetes mice induced by Surwit's high fat, high sucrose diet. Mice were divided into 4 groups of ND (normal diet), HFD (high fat and high sucrose diet), Met (high fat and high sucrose diet with metformin) and MMF (high fat and high sucrose diet with Massa Medicata Fermentata) and investigated over 8 weeks. Diabetic and obese clinical markers, including body weight, glucose level, lipid level, leptin concentration, epididymal fat pad and liver weights and adipose tissue macrophage (ATM) were determined. Results: Compared with the HFD group, body weight, fructosamine, triglyceride, epididymal fat pad weight and ATM were significantly reduced in the MMF group. Conclusions: From the above results, the intake of Massa Medicata Fermentata may be effective in anti-hyperglycemia and anti-obesity by the attenuation of glucose and lipid levels and also inflammation state. Massa Medicata Fermentata may be beneficial for controlling diabetes mellitus type 2 in humans.

Theracurmin (Highly Bioavailable Curcumin) Prevents High Fat Diet-Induced Hepatic Steatosis Development in Mice

  • Yang, Jin Won;Yeo, Hee Kyung;Yun, Jee Hye;Lee, Jung Un
    • Toxicological Research
    • /
    • 제35권4호
    • /
    • pp.403-410
    • /
    • 2019
  • Curcumin, a hydrophobic polyphenol isolated from the Curcuma longa L. plant, has many pharmacological properties, including antioxidant, anti-inflammatory, and chemo-preventive activities. Curcumin has been shown to have potential in preventing nonalcoholic fatty liver disease (NAFLD). However, the low bioavailability of curcumin has proven to be a major limiting factor in its clinical adoption. Theracurmin, a highly bioavailable curcumin that utilizes micronized technology showed improved biological absorbability in vivo. The aim of this study was to investigate the role of theracurmin in modulating hepatic lipid metabolism in vivo. A fatty liver mouse model was produced by feeding mice a high fat diet (HFD; 60% fat) for 12 weeks. We found that treatment for 12 weeks with theracurmin significantly lowered plasma triacylglycerol (TG) levels and reduced HFD-induced liver fat accumulation. Theracurmin treatment lowered hepatic TG and total cholesterol (T-CHO) levels in HFD-fed mice compared to controls. In addition, theracurmin administration significantly reduced lipid peroxidation and cellular damage caused by reactive oxygen species in HFD-fed mice. Overall, these results suggest that theracurmin has the ability to control lipid metabolism and can potentially serve as an effective therapeutic remedy for the prevention of fatty liver.

Anti-Obesity Effect of Red Radish Coral Sprout Extract by Inhibited Triglyceride Accumulation in a Microbial Evaluation System and in High-Fat Diet-Induced Obese Mice

  • Lee, Nam Keun;Cheon, Chun Jin;Rhee, Jin-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권3호
    • /
    • pp.397-400
    • /
    • 2018
  • Rhodosporidium toruloides, an oleaginous yeast, can be used as a fast and reliable evaluation tool to screen new natural lipid-lowering agents. Herein, we showed that triglyceride (TG) accumulation was inhibited by 42.6% in 0.1% red radish coral sprout extract (RRSE)-treated R. toruloides. We also evaluated the anti-obesity effect of the RRSE in a mouse model. The body weight gain of mice fed a high-fat diet (HFD) with 0.1% RRSE (HFD-RRSE) was significantly decreased by 60% compared with that mice fed the HFD alone after the 8-week experimental period. Body fat of the HFD-RRSE-fed group was dramatically reduced by 38.3% compared with that of the HFD-fed group.

수풍순기환 투여가 고지방, 고탄수화물 식이로 유발된 비만형 제2형 당뇨병 동물모델에 미치는 영향 (The Effects of Supungsunki-hwan on High Fat, High Carbohydrate Diet-induced Obese Type 2 Diabetic Mouse Model)

  • 박종설;이병철;두호경;안영민;안세영
    • 대한한방내과학회지
    • /
    • 제30권2호
    • /
    • pp.257-269
    • /
    • 2009
  • Objective : Obesity is an important cause of diabetes, and lipotoxicity causes insulin resistance. Recently a lot of research is being done on PPAR-${\alpha}$. TNF-${\alpha}$. adiponectin, and leptin, which are important obesity related factors. In this study, we investigated the effects of Supungsunki-hwan on high fat. high carbohydrate diet-induced obese type 2 diabetic mouse models. Methods: Diabetes was induced in ICR male mouse (30${\pm}$5g) with Surwit's high fat, high sucrose diet. Mice were divided into 4 groups(n=10) of Normal. Control. Supungsunkj-hwan group. and acarbose group. The Supungsunki-hwsn group was given 10% Supungsunkj-hwan in their diet. and the acarbose group was given 0.5% acarbose in their diet. After 6 weeks. body weight. food intake, FBS and OGTT. lipid profile and liver enzymes, epididymal fat weight, and gene expression of leptin, adiponectin, TNF-${\alpha}$ and PPAR-${\alpha}$ were measured. Leptin. adiponectin. tumor necrosis factor(TNF)-${\alpha}$ and peroxisome proliferator-activated receptor (PPAR)-${\alpha}$ were evaluated by reverse transcription-polymerase chain reaction. Results : Supungsunkj-hwan increased the gene expression of PPAR-${\alpha}$, which reduces lipotoxicity and insulin resistance. Supungsunkj-hwan also significantly reduced triglyceride. AST. ALT serum levels. and 1 hour oral glucose tolerance levels. Conclusion : These results show that Supungsunkj-hwan improves insulin resistance in the liver and muscles, by reducing triglyceride levels and lipotoxicity through increased PPAR-${\alpha}$ gene expression. This is supported by the fact that Supungsunkj-hwan significantly reduces 1 hour oral glucose tolerance levels. Therefore we suggest that Supungsunkj-hwan would be an effective treatment for obese type 2 diabetic patients.

  • PDF

A ketogenic diet reduces body weight gain and alters insulin sensitivity and gut microbiota in a mouse model of diet-induced obesity

  • Sumin Heo;Soo Jin Yang
    • Journal of Nutrition and Health
    • /
    • 제56권4호
    • /
    • pp.349-360
    • /
    • 2023
  • Purpose: Ketogenic diets (KDs) have anti-obesity effects that may be related to glucose control and the gut microbiota. This paper hypothesizes that KD reduces body weight and changes the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity. Methods: In this study, C57BL/6 male mice were assigned randomly to 3 groups. The assigned diets were provided to the control and high-fat (HF) diet groups for 14 weeks. The KD group was given a HF diet for 8 weeks to induce obesity, followed by feeding the KD for the next 6 weeks. Results: After the treatment period, the KD group exhibited a 35.82% decrease in body weight gain compared to the HF group. In addition, the KD group demonstrated enhanced glucose control, as shown by the lower levels of serum fasting glucose, serum fasting insulin, and the homeostatic model assessment of insulin resistance, compared to the HF group. An analysis of the gut microbiota using 16S ribosomal RNA sequencing revealed a significant decrease in the proportion of Firmicutes when the KD was administered. In addition, feeding the KD reduced the overall alpha-diversity measures and caused a notable separation of microbial composition compared to the HF diet group. The KD also led to a decrease in the relative abundance of specific species, such as Acetatifactor_muris, Ligilactobacillus_apodemi, and Muribaculum_intestinale, compared with the HF group. These species were positively correlated with the body weight, whereas the abundant species in the KD group (Kineothrix_alysoides and Saccharofermentans_acetigenes) showed a negative correlation with body weight. Conclusion: The current study presents supporting evidence that KD reduced the body weight and altered the insulin sensitivity and gut microbiota composition in a mouse model of diet-induced obesity.

Anti-inflammatory and anti-diabetic effects of brown seaweeds in high-fat diet-induced obese mice

  • Oh, Ji-Hyun;Kim, Jaehoon;Lee, Yunkyoung
    • Nutrition Research and Practice
    • /
    • 제10권1호
    • /
    • pp.42-48
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Seaweeds have been reported to have various health beneficial effects. In this study, we investigated the potential anti-obesity and anti-inflammatory effects of four types of domestic brown seaweeds in a high-fat diet-induced obese mouse model and bone marrow-derived macrophages (BMDM). MATERIALS/METHODS: Male C57BL/6N mice were fed low-fat diet (LFD), high-fat diet (HFD) or HFD containing Undaria Pinnatifida, HFD containing Laminaria Japonica (LJ), HFD containing Sargassum Fulvellum, or HFD containing Hizikia Fusiforme (HF) for 16 weeks. RESULTS: Brown seaweed supplementation did not affect long-term HFD-associated changes in body weight or adiposity, although mice fed HFD + LJ or HFD + HF gained slightly less body weight compared with those fed HFD at the beginning of feeding. Despite being obese, mice fed HFD + LJ appeared to show improved insulin sensitivity compared to mice fed HFD. Consistently, we observed significantly reduced blood glucose concentrations in mice fed HFD + LJ compared with those of mice fed HFD. Although no significant differences in adipocyte size were detected among the HFD-fed groups, consumption of seaweeds decreased formation of HFD-induced crown-like structures in gonadal adipose tissue as well as plasma inflammatory cytokines. BMDM from mice fed HFDs with seaweeds showed differential regulation of pro-inflammatory cytokines such as IL-$1{\beta}$ and IL-6 compared with BMDM from mice fed HFD by LPS stimulation. CONCLUSION: Although seaweed consumption did not prevent long-term HFD-induced obesity in C57BL/6N mice, it reduced insulin resistance (IR) and circulation of pro-inflammatory cytokines. Therefore, seaweeds may ameliorate systemic inflammation and IR in obesity partially due to inhibition of inflammatory signaling in adipose tissue cells as well as bone marrow-derived immune cells.

고지방식이 급여 마우스에서 curcumin의 인슐린 저항성 개선 효능 (Improvement of Insulin Resistance by Curcumin in High Fat Diet Fed Mice)

  • 김단비;안은영;김은정
    • 문화기술의 융합
    • /
    • 제4권1호
    • /
    • pp.315-323
    • /
    • 2018
  • 당뇨 환자의 급격한 증가는 한국의 주요 건강문제중 하나이다. 당뇨 예방 또는 치료용 식품개발에 대한 노력의 일환으로 본 연구에서는 고지방식이급여로 유도한 제2형 당뇨동물모델에서 커큐민의 항당뇨효능을 연구하였다. C57BL/6 마우스를 정상식이, 고지방식이, 그리고 고지방식이에 0.02% 커큐민을 급여한 군으로 나누고 각 식이를 총 16주간 급여하였다. 그 결과, 커큐민 급여군이 고지방식이급여군에 비해 체중 증가량, 혈당, 혈중 인슐린, 총콜레스테롤, LDL-콜레스테롤 농도가 유의적으로 감소하였고 반면에 HDL-콜레스테롤 수준은 증가하였다. 또한 커큐민의 급여는 인슐린 신호전달체계를 활성화시켰다. 이러한 결과는 커큐민이 인슐린 저항성을 일부 극복시킴으로써 비만과 연관된 제2형 당뇨병을 개선시킬 수 있음을 제시한다.

Probiotic Property and Anti-Obesity Effect of Lactiplantibacillus plantarum KC3

  • Kim, Seulki;Huang, Eunchong;Ji, Yosep;Holzapfel, Wilhelm Helnrich;Lim, Sang-Dong
    • 한국축산식품학회지
    • /
    • 제42권6호
    • /
    • pp.996-1008
    • /
    • 2022
  • Lactic acid bacteria are representative probiotics that have beneficial effects on humans. Nineteen strains among the 167 single strains from kimchi was selected and their physiological features were investigated. The selection of a strain was based on strong enzyme (lipase, α-amylase, and α-glucosidase) inhibitory activities and anti-obesity effects in the adipocytes. For the final selection, the strain Lactiplantibacillus plantarum KC3 was tested for its potential as a starter. To assess its functionality, a freeze-dried culture of L. plantarum KC3 was administered to a diet-induced obese mouse model receiving a high-fat diet. The animal group administered with L. plantarum KC3 showed significant body weight loss during the 12-week feeding period compared to the high-fat control group. This study investigated the physiological characteristics of selected strain and evaluated its potential as an anti-obesity probiotic in mice.

고지방 식이 유발 비만에서 베타원 추출물이 지방세포 분화 억제에 미치는 영향 (Effects of Betaone Extract on the Inhibition of Adipocyte Differentiation in High-fat Diet-induced Obesity)

  • 이용진;신한별;이미자;이미경;손영진
    • 생약학회지
    • /
    • 제53권3호
    • /
    • pp.138-144
    • /
    • 2022
  • Obesity is a disease in which an abnormally large amount of fat accumulates in the body. Various diseases such as type 2 diabetes, dyslipidemia, high blood pressure, fatty liver, gallbladder disease, and coronary artery disease are induced. In this study, we investigated the effect of betaone, a type of barley, on obesity suppression. After the betaone extract was treated with 3T3 L1 adipocytes, the effect on adipocyte formation was investigated through Oil Red O staining. It was observed that differentiation was inhibited without affecting the viability of 3T3 L1 adipocytes. The effect of betaone extract on obesity inhibition in a mouse model was investigated. As a result of administering betaone extract after a high-fat diet, it was confirmed that the level of blood sugar and body weight was decreased, and glucose uptake ability was improved in a glucose tolerance test. The formation of mouse adipose tissue was suppressed, and the expression of genes involved in the formation and degradation of obesity in liver tissue was improved. These results suggest that betaone extract is a useful substance for improving obesity and is an excellent material for health functional food.

고지방식이 공급에 따른 성장기 마우스의 골의 형태학적 미세구조와 염증지표 변화 (Relationship between Bone Morphological Microstructure and Inflammatory Markers in Growing Mice Fed a High Fat Diet)

  • 김미성;이현아;김옥진;손정민
    • Journal of Nutrition and Health
    • /
    • 제44권6호
    • /
    • pp.481-487
    • /
    • 2011
  • 본 연구에서는 성장기 마우스 모델을 이용하여 고지방식 이를 제공한 후 이에 따른 염증지표와 골의 형태학적 미세구조의 변화를 살펴보았다. C57BL/6J 4주령 수컷 마우스를 난괴법에 의해 대조군 (n = 6)과 실험군 (n = 6)로 분류하여 대조군에는 10% Kcal fat 식이와 고지방식이군에는 45% Kcal fat 식이를 12주 동안 자유급식 방법으로 제공하였다. 혈액검사와 염증지표를 분석하였으며 micro-CT를 이용하여 대퇴부 뼈의 형태학적 미세구조를 측정하였다. 대조군과 고지방식이군의 체중 증가는 각각 $5.85{\pm}1.84g$, $16.06{\pm}5.64g$로 유의한 차이를 보였으며 (p < 0.01), 혈당은 각각 $115.00{\pm}16.88mg/dL$, $188.33{\pm}13.29mg/dL$ (p < 0.01), 중성지방은 각각 $65.00{\pm}6.19mg/dL$, $103.33{\pm}8.02mg/dL$ (p < 0.05)로 나타났다. 렙틴과 IL-6는 고지방식이군에서 유의적으로 높게 나타났다 (p < 0.01). 골대사의 생화학적지표 분석 결과 오스테오칼신은 고지방식이군에서 낮게 나타났으나 유의적이지 않았으며, CTx은 고지방식이군에서 유의적으로 높게 나타났다 (p < 0.01). 골밀도는 고지방식이군에서 낮게 나타났으나 유의적인 차이는 보이지 않았다. 그러나 골의 형태학적 미세구조 분석결과 골소주의 두께는 고지방식이 군이 대조군보다 유의적으로 좁게 나타났으며 (p < 0.05), 골소주의 간격은 고지방식이군이 유의적으로 넓게 나타났다 (p < 0.05). 골의 형태학적 미세구조인 골소주의 간격과 IL-6가 양의 상관성이 나타났다 (p < 0.05). 본 연구결과 최대골밀도가 형성되는 단계의 성장기 마우스에서 고지방식이 공급을 통한 비만 유도 현상은 골소주의 수와 골소주가 차지하는 비율의 변화를 유발하여 골 미세구조에 영향을 미치는 것으로 나타났으며, 염증지표와 상관성이 나타났다. 이에 성장기에 염증지표 증가를 억제하고 정상적인 골형성을 위하여 과잉의 지방섭취 제한이 필요할 것으로 사료된다.