• Title/Summary/Keyword: High-energy mechanisms

Search Result 277, Processing Time 0.024 seconds

Elemental alteration of the surface of dental casting alloys induced by electro discharge machining (치과용 주조 합금의 방전가공에 따른 표면 성분 변화)

  • Jang, Yong-Chul;Lee, Myung-Kon
    • Journal of Technologic Dentistry
    • /
    • v.31 no.1
    • /
    • pp.55-61
    • /
    • 2009
  • Passive fitting of meso-structure and super-structures is a predominant requirement for the longevity and clinical success of osseointegrated dental implants. However, precision and passive fitting has been unpredictable with conventional methods of casting as well as for corrective techniques. Alternative to conventional techniques, electro discharge machining(EDM) is an advanced method introduced to dental technology to improve the passive fitting of implant prosthesis. In this technique material is removed by melting and vaporization in electric sparks. Regarding the efficacy of EDM, the application of this technique induces severe surface morphological and elemental alterations due to the high temperatures developed during machining, which vary between $10,000{\sim}20,000^{\circ}C$. The aim of this study was to investigate the morphological and elemental alterations induced by EDM process of casting dental gold alloy and non-precious alloy used for the production of implant-supported prosthesis. A conventional clinical dental casting alloys were used for experimental specimens patterns, which were divided in three groups, high fineness gold alloy(Au 75%, HG group), low fineness gold alloy(Au 55%, LG group) and nonprecious metal alloy(Ni-Cr, NP group). The UCLA type plastic abutment patterns were invested with conventional investment material and were cast in a centrifugal casting machine. Castings were sandblasted with $50{\mu}m\;Al_2O_3$. One casting specimen of each group was polished by conventional finishing(HGCON, LGCON, NPCON) and one specimen of each group was subjected to EDM in a system using Cu electrodes, kerosene as dielectric fluid in 10 min for gold alloy and 20 min for Ni-Cr alloy(HGEDM. LGEDM, NOEDM). The surface morphology of all specimens was studied under an energy dispersive X-ray spectrometer (EDS). The quantitative results from EDS analysis are presented on the HGEDM and LGEDM specimens a significant increase in C and Cu concentrations was found after EDM finishing. The different result was documented for C on the NPEDM with a significant uptake of O after EDM finishing, whereas Al, Si showed a significant decrease in their concentrations. EDS analysis showed a serious uptake of C and Cu after the EDM procedure in the alloys studied. The C uptake after the EDM process is a common finding and it is attributed to the decomposition of the dielectric fluid in the plasma column, probably due to the development of extremely high temperatures. The Cu uptake is readily explained from the decomposition of Cu electrodes, something which is also a common finding after the EDM procedure. However, all the aforementioned mechanisms require further research. The clinical implication of these findings is related with the biological and corrosion resistance of surfaces prepared by the EDM process.

  • PDF

Atmospheric Pressure Plasma Treatment of Aqueous Bisphenol A Solution (비스페놀 A 수용액의 대기압 플라즈마 처리)

  • Jo, Jin-Oh;Choi, Kyeong Yun;Gim, Suji;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • This work investigated the plasma treatment of aqueous bisphenol A (BPA) solution and mineralization pathways. For the effective contact between plasmatic gas and aqueous BPA solution, the plasma was created inside a porous ceramic tube, which was uniformly dispersed into the aqueous solution through micro-pores of the ceramic tube. Effects of the gas flow rate, applied voltage and treatment time on the decomposition of BPA were examined, and analyses using ultraviolet (UV) spectroscopy, ion chromatography and gas chromatography-mass spectrometry were also performed to elucidate mineralization mechanisms. The appropriate gas flow rate was around $1.0L\;min^{-1}$; when the gas flow rate was too high or too low, the BPA decomposition performance at a given electric power decreased. The increase in the voltage improves the BPA decomposition due to the increased electric power, but the energy required to remove BPA was similar, regardless of the voltage. Under the condition of $1.0L\;min^{-1}$ and 20.8 kV, BPA at an initial concentration of $10L\;min^{-1}$ (volume : 1 L) was successfully treated within 30 min. The intermediates produced by the attack of ozone and hydroxyl radicals on BPA were further oxidized to stable compounds such as acetate, formate and oxalate.

Effects of a Herbal Composition (HemoHIM) on the Activation of Dendritic Cells (생약복합조성물(HemoHIM)의 수지상세포 활성화 효과)

  • Shin, Sung-Hae;Kim, Do-Soon;Kim, Sung-Ho;Jo, Sung-Kee;Byun, Mung-Woo;Yee, Sung-Tae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.10
    • /
    • pp.1322-1328
    • /
    • 2006
  • In our previous study, a novel herb mixture (HIM-I) of Angelica gigas radix, Cnidium officinale rhizoma, and Paeonia japonica radix was developed to protect= the intestinal and immune systems and to promote their recovery from radiation damage. A new herbal composition (HemoHIM) with the high immune modulating activity was developed from HIM-I. In the present study, we examined the effects of HemoHIM on the maturation process of murine bone marrow (BM)-derived dendritic cells (DC). BM cells were cultured in the presence of iL-4 and GM-CSF and the generated immature DC were stimulated with HemoHIM for 24 hours. HemoHIM significantly enhanced the expression of co-stimulatory molecules, CD80 and CD86, especially. The activation capacity of HemoHIM-treated DC was significantly higher than that of immature DC, as analyzed by IL-2 and $IFN-\gamma$ production and proliferation of the responding T cells in the co-culture with allogeneic T cells. The antigen-presenting capacity of HemoHIN-treated DC was also increased by the co-culture with OVA-specific T cells (HS-1), as analyzed by IL-2 and $IFN-\gamma$ production and the proliferation. These results indicate that HemoHIM causes the maturation and ;Activation of DC, which may be a part of mechanisms of immunomodulation by HemoHIM.

Micromorphology and Chemical Composition of a Sialolith in the Submandibular Gland Duct (악하선 내 타석의 미세형상 및 화학적 조성)

  • Im, Yeong-Gwan;Song, Ho-Jun;Kim, Byung-Gook
    • Journal of Oral Medicine and Pain
    • /
    • v.36 no.3
    • /
    • pp.161-167
    • /
    • 2011
  • Sialolith is one of the most common pathologic conditions found in the salivary glands. The mechanisms responsible for the formation of sialoliths have not been elucidated so far. In this article, the chemical composition and micromorphology of a sialolith of a 58-year old female patient suffering from chronic sialoadenitis of the submandibular gland was analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In a SEM evaluation, the highly mineralized amorphous core surrounded by lamellar and concentric structures was revealed, however no foreign body, organic material, or signs of microorganism were observed in the core of the sialolith. EDX analysis showed the central core was composed of only Ca, O and P, and that a high level of C was detected near the central area as well. These results indicated that the inorganic composition of the sialolith was hydroxyapatite crystals, and that inorganic and organic substances existed around the central cores. This study suggests that the sialolith was composed mainly of hydroxyapatite crystals and the formation of the nucleus of the sialolith in the submandibular gland duct was secondary to sialadenitis, which favors the growth of an inorganic crystalline nucleus.

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors (완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출)

  • Hong, Chang-Ho;Kim, Ji-Won;Kim, Jin-Seop;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.30-58
    • /
    • 2022
  • The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.

Investigation on Characteristics of High PM2.5 Pollution Occurred during October 2015 in Gwangju (광주 지역에서 2015년 10월에 발생한 PM2.5 고농도 사례 특성 분석)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Lim, Yong Jae;Shin, Hye Jung;Lee, Sang Bo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.567-587
    • /
    • 2018
  • A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental carbon, water-soluble ions, and elemental constituents were measured at the air quality intensive monitoring station in Gwangju. The haze event occurred was attributed to a significant contribution (72.3%) of secondary inorganic species concentration to the $PM_{2.5}$, along with the contribution of organic aerosols that were strongly attributed to traffic emissions over the study site. MODIS images, weather charts, and air mass backward trajectories supported the significant impact of long-range transportation (LTP) of aerosol particles from northeastern China on haze formation over Gwangju in October 2015. The driving factor for the haze formation was stagnant atmospheric flows around the Korean peninsula, and high relative humidity (RH) promoted the haze formation at the site. Under the high RH conditions, $SO{_4}^{2-}$ and $NO_3{^-}$ were mainly produced through the heterogenous aqueous-phase reactions of $SO_2$ and $NO_2$, respectively. Moreover, hourly $O_3$ concentration during the study period was highly elevated, with hourly peaks ranging from 79 to 95ppb, suggesting that photochemical reaction was a possible formation process of secondary aerosols. Over the $PM_{2.5}$ pollution, behavior and formation of secondary ionic species varied with the difference in the impact of LTP. Prior to October 19 when the influence of LTP was low, increasing rate in $NO_3{^-}$ was greater than that in $NO_2$, but both $SO_2$ and $SO{_4}^{2-}$ had similar increasing rates. While, after October 20 when the impact of haze by LTP was significant, $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations increased significantly more than their gaseous precursors, but with greater increasing rate of $NO_3{^-}$. These results suggest the enhanced secondary transformation of $SO_2$ and $NO_2$ during the haze event. Overall, the result from the study suggests that control of anthropogenic combustion sources including vehicle emissions is needed to reduce the high levels of nitrogen oxide and $NO_3{^-}$ and the high $PM_{2.5}$ pollution occurred over fall season in Gwangju.

Dynamic modeling of LD converter processes

  • Yun, Sang Yeop;Jung, Ho Chul;Lee, In-Beum;Chang, Kun Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1639-1645
    • /
    • 1991
  • Because of the important role LD converters play in the production of high quality steel, various dynamic models have been attempted in the past by many researchers not only to understand the complex chemical reactions that take place in the converter process but also to assist the converter operation itself using computers. And yet no single dynamic model was found to be completely satisfactory because of the complexity involved with the process. The process indeed involves dynamic energy and mass balances at high temperatures accompanied by complex chemical reactions and transport phenomena in the molten state. In the present study, a mathematical model describing the dynamic behavior of LD converter process has been developed. The dynamic model describes the time behavior of the temperature and the concentrations of chemical species in the hot metal bath and slag. The analysis was greatly facilitated by dividing the entire process into three zones according to the physical boundaries and reaction mechanisms. These three zones were hot metal (zone 1), slag (zone 2) and emulsion (zone 3) zones. The removal rate of Si, C, Mn and P and the rate of Fe oxidation in the hot metal bath, and the change of composition in the slag were obtained as functions of time, operating conditions and kinetic parameters. The temperature behavior in the metal bath and the slag was also obtained by considering the heat transfer between the mixing and the slag zones and the heat generated from chemical reactions involving oxygen blowing. To identify the unknown parameters in the equations and simulate the dynamic model, Hooke and Jeeves parttern search and Runge-Kutta integration algorithm were used. By testing and fitting the model with the data obtained from the operation of POSCO #2 steelmaking plant, the dynamic model was able to predict the characteristics of the main components in the LD converter. It was possible to predict the optimum CO gas recovery by computer simulation

  • PDF

Predictive Factors for MDCT as a Primary Survey in Traumatic Cervical Spine Injury (외상환자에 있어서 일차조사로서 경추부 전산화 단층 촬영의 예측인자)

  • Pak, Guen-E.;Han, Chul;Cho, Young-Duck;Kim, Jung-Youn;Yoon, Young-Hoon;Lee, Sung-Woo;Moon, Sung-Woo;Choi, Sung-Hyuk
    • Journal of Trauma and Injury
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 2011
  • Purpose: Missing cervical pathology after injury may lead to disability and influence long-term survival. Controversies continue to evolve concerning the initial screening methods used to predict cervical spine injury. Through a retrospective chart review, we attempted to analyze and propose factors predictive of cervical trauma. Methods: Of all the patients who had visited the Emergency Department of Korea University, from January 2009 to December 2009, a retrospective review of the clinical records of the 217 patients who had undergone cervical spine computed tomography was done. We investigated whether we could predict the need for cervical spine computed tomography shortly after presentation in trauma patients by comparing the group with fractures and group without fractures and by finding risk factors showing significant differences between the two groups that might be used as guides in decision making. Results: Of the 217 subjects who underwent cervical spine computed tomography scans, 33 were identified with fractures of the cervical spine while 184 were not. The most common mechanisms of trauma, in order, for those with fractures were falls, followed by traffic accidents. We found that the injury severity score, multiple injuries, a high-energy injury mechanism, neurologic deficit, and pain and tenderness of the cervical spine showed statistically significant differences between the two groups. Conclusion: Fractures of the cervical spine that are not observed with simple radiography occur with a relatively high frequency in trauma patients. Consideration should be given to the risk factors for cervical spine fracture, and if pertinent, cervical spine computed tomography should be performed with speed for early diagnosis of cervical spine fractures.

A Preliminary Analysis on the International Management System for the Ocean fertilization with Iron at High Seas (해양 철분 시비(施肥)사업의 국제 관리체제 예비 분석)

  • Hong, Gi-Hoon;Sohn, Hyo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.11 no.3
    • /
    • pp.138-149
    • /
    • 2008
  • Rapid accumulation of carbon dioxide in the atmosphere for the past century leads to acidify the surface ocean and contributes to the global warming as it forms acid in the ocean and it is a green house gas. In order to curb the green house gas emissions, in particular carbon dioxide, various multilateral agreements and programs have been established including UN Convention of Climate Change and its Kyoto Protocol for the last decades. Also a number of geo-engineering projects to manipulate the radiation balance of the earth have been proposed both from the science and industrial community worldwide. One of them is ocean fertilization to sequester carbon dioxide from the atmosphere through the photosynthesis of phytoplankton in the sea. Deliberate fertilization of the ocean with iron or nitrogen to large areas of the ocean has been proposed by commercial sector recently. Unfortunately the environmental consequences of the large scale ocean iron fertilization are not known and the current scientific information is still not sufcient to predict. In 2007, the joint meeting of parties of the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972 and 1996 Protocol (London Convention/Protocol) has started considering the purposes and circumstances of proposed large-scale ocean iron fertilization operations and examined whether these activities are compatible with the aims of the Convention and Protocol and explore the need, and the potential mechanisms for regulation of such operations. The aim of this paper is to review the current development on the commercial ocean fertilization activities and management regimes in the potential ocean fertilization activities in the territorial sea, exclusive economic zone, and high seas, respectively, and further to have a view on the emerging international management regime to be London Convention/Protocol in conjunction with a support from the United Nations General Assembly through The United Nations Open-ended Informal Consultative Process on Oceans and the Law of the Sea.

  • PDF

Comparison of the Injury Mechanism, Pattern and Initial Management Approach for Orthopedic Injuries According to the Injury Severity in Moderate-to-Severe Injured Patients (중등도 이상의 손상 환자에서 손상 중증도에 따른 정형외과적 손상에 대한 수상기전, 손상유형, 초기 치료적 접근의 비교)

  • Lee, Eui-Sup;Sohn, Hoon-Sang;Kim, Younghwan;Shon, Min Soo
    • Journal of the Korean Orthopaedic Association
    • /
    • v.55 no.5
    • /
    • pp.383-396
    • /
    • 2020
  • Purpose: This study compared the injury mechanism, site, type, initial management approach of orthopedic injury, and outcomes according to the injury severity in moderate-to-severe injured patients. Materials and Methods: During 57-month, excluding the period when the authors' emergency/trauma center was not operating, from 2014 to 2019, a retrospective study was conducted on 778 patients with orthopedic injuries among patients with an Injury Severity Score (ISS)>9 scored. The patients were classified into moderate-injured group (group-1, 679) and severe-injured group (group-2, 99) according to the injury severity based on the ISS and physiologic parameters. The injury mechanism and non-orthopedic injury were evaluated. Orthopedic injuries were assessed according to the injury pattern and the number of anatomical regions and bone sites involved. The management approach for the orthopedic injuries in two groups was compared. Outcomes (hospital stay, systemic complications, and in-hospital mortality) were evaluated, and the risk factors for mortality were analyzed. Results: In group-2, the incidence of younger males, high-energy mechanisms, and accompanying injuries was significantly higher than in group-1. The number of anatomical regions and bone sites involved increased in group-2. The involvement of the pelvis, spine, and upper extremity was significantly higher in group-2, whereas group-1 was involved mainly by the lower extremities. Depending on the patient's condition, definitive or staged management for orthopedic injuries may be used. Group-1 was treated mainly with definite fixation after the physiological stabilization process, and group-2 was treated with staged management using temporary external fixation. The hospital stay was significantly longer in group-2. The overall systematic complications and in-hospital mortality was approximately 4.9% and 4.5%. A higher injury severity was associated with higher in-hospital mortality (2.9%, 15.2%; p<0.0001). Increasing age and high ISS are independent risk factors for mortality. Conclusion: A higher severity of injury was associated with a higher incidence of high-energy mechanism, younger, male, accompanying injuries, and the frequency and severity of orthopedic injuries. Severe polytrauma patients were treated mainly with a staged approach, such as external fixation. The hospital stay, systematic complications, and in-hospital mortality were significantly higher in severe-injured patients. Age and ISS are strong predictors of in-hospital mortality in polytrauma.