• 제목/요약/키워드: High-efficiency high-power boost converter

검색결과 273건 처리시간 0.029초

A New Single-Stage PFC AC/DC Converter

  • Lee, Byoung-Hee;Kim, Chong-Eun;Park, Ki-Bum;Moon, Gun-Woo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.238-240
    • /
    • 2007
  • A new ZVZCS Single-Stage Power-Factor-Correction(PFC) AC/DC converter with boost PFC cell is integrated with voltage doubler rectified asymmetrical half-bridge(VDRAHB) is proposed in this paper. The proposed converter features good power factor correction, low current harmonic distortions, tight output regulations and low voltage of link capacitor. An 85W prototype was implemented to show that it meets the harmonic requirements and standards satisfactorily with nearly unity power factor and high efficiency over universal input.

  • PDF

MPPT 제어 기능을 갖는 진동에너지 수확을 위한 CMOS 인터페이스 회로 (A CMOS Interface Circuit for Vibrational Energy Harvesting with MPPT Control)

  • 양민재;윤은정;유종근
    • 전기전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.45-53
    • /
    • 2016
  • 본 논문에서는 진동에너지 수확을 위한 MPPT (Maximum Power Point Tracking) 제어 기능을 갖는 CMOS 인터페이스 회로를 설계하였다. 간단한 구조와 적은 비용으로 출력을 안정화시키기 위해 전력변환기인 DC-DC 부스트 변환기의 출력 단에 PMU (Power Management Unit)를 이용하는 구조를 제안하였다. 또한, 진동소자로부터 최대전력을 수확하여 시스템의 효율을 향상시키기 위해 FOC (Fractional Open Circuit) 방식의 MPPT 제어회로를 설계하였다. 진동소자 (PZT)에서 출력되는 AC 신호는 AC-DC 변환기를 통해 DC 신호로 변환되며, DC-DC 부스트 변환기를 거쳐 승압되고, PMU에 의해 듀티 (duty)를 갖는 안정화된 신호로 변환되어 부하로 공급된다. AC-DC 변환기는 효율 특성이 좋은 능동 다이오드를 이용한 전파정류기를 사용하였으며, DC-DC 부스트 변환기는 제어회로가 간단한 쇼트키 다이오드를 이용한 구조를 사용하였다. 제안된 회로는 $0.35{\mu}m$ CMOS 공정으로 설계되었으며, 설계된 칩의 면적은 $915{\mu}m{\times}895{\mu}m$이다. 설계된 회로의 성능을 검증한 결과 전체회로의 최대 전력효율은 83.4%이다.

Research on High Efficiency Non-Isolated Push-Pull Converters with Continuous Current in Solar-Battery Systems

  • Li, Yan;Zheng, Trillion Q.;Chen, Qian
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.432-443
    • /
    • 2014
  • In order to improve the output efficiency of solar cells and to extend the life span of batteries, the input currents of converters are required to be continuous. If low output voltage ripple is required at the same time, it is obvious that the application of basic two-order converters (such as Buck and Boost derived converters) will not be good enough. In this paper, a lot of non-isolated push-pull converters (NIPPCs) with continuous current will be introduced due to their lower current stress, higher efficiency and better EMC performance. By decomposing the converters into push-pull cells, inductor and free-wheeling diodes, two families of NIPPCs based on single inductor and coupled inductor separately are systematically generated. Furthermore, characteristics analyses for some of the generated converters are also shown in this paper. Finally, two prototypes based on the corresponding typical topologies are built in the lab to verify the theoretical outcomes.

무인항공기를 위한 3.7V 단일 배터리 셀 고효율 전력관리 회로시스템 (3.7-V Single Battery-Cell High-Efficiency Power Management Circuit and System for UAV-Drones)

  • 강운성;황선남;장호정;김현식
    • 마이크로전자및패키징학회지
    • /
    • 제24권3호
    • /
    • pp.63-69
    • /
    • 2017
  • 본 논문은 드론의 체공시간 증대를 위해 고효율 전력관리 회로 및 시스템을 제안한다. 종래의 드론은 다수개의 직렬 배터리와 낮은 효율의 선형 레귤레이터 사용으로 무겁고 발열이 크며 이로 인한 전력누수 문제가 있었다. 본 논문에서는 3.7V 단일 Li-Po 배터리 셀을 사용할 수 있는 스위칭 방식의 승압형 DC-DC 전력변환 회로에 대한 연구를 다룬다. 본 연구를 통해 시제품 개발 결과 3.7V 입력, 5V 출력의 step-up regulation을 실현하였다. 또한 종래 선형 레귤레이터의 50% 수준이었던 전력효율 대비 최대 91.3% 효율과 $50^{\circ}C$ 이하의 표면온도를 달성하였으며, 0.02V/V 및 0.15V/A의 line/load regulation 성능을 측정으로 검증하였다. 본 연구결과를 통해 3.7V 단일 셀 배터리 사용으로 충방전을 위한 별도의 cell-balancing 회로가 필요하지 않게 되며, 높은 전력관리 효율로 드론의 체공시간을 획기적으로 개선시킬 수 있는 가능성을 확인하였다.

Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구 (A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation)

  • 정동효
    • 전기학회논문지P
    • /
    • 제51권3호
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

단상 고역률 PWM 승압형 정류기의 특성해석 (Characteristics analysis of single-phase high power factor PWM boost rectifier)

  • 김주용;문상필;서기영;김영문;김해제
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 B
    • /
    • pp.1209-1210
    • /
    • 2006
  • This paper presents a single phase high power factor PWM boost rectifier featuring soft commutat -ion of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing IGBT's. The principle of operation, the theoretical analysis, a design example, and experi -mental results from a laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current THD equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

1.6[kW]급 단상 ZCS-PWM HPF 승압형 정류기 (The 1.6[kW] Class Single Phase ZCS-PWM High Power Factor Boost Rectifier)

  • 문상필;김승인;윤영태;김영문;이현우;서기영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.1169-1171
    • /
    • 2003
  • This paper presents a 1.6[kW]class single phase high power factor(HPF) pulse width modulation(PWM) boost rectifier featuring soft commutation of the active switches at zero current. It incorporates the most desirable properties of conventional PWM and soft switching resonant techniques. The input current shaping is achieved with average current mode control and continuous inductor current mode. This new PWM converter provides zero current turn on and turn off of the active switches, and it is suitable for high power applications employing insulated gate bipolar transistors(IGBT'S). The principle of operation, the theoretical analysis, a design example, and experimental results from laboratory prototype rated at 1.6[kW] with 400[Vdc] output voltage are presented. The measured efficiency and the power factor were 96.2[%] and 0.99[%], respectively, with an input current Total Harmonic Distortion(THD) equal to 3.94[%], for an input voltage with THD equal to 3.8[%], at rated load.

  • PDF

태양광 최대 전력 추종기를 위한 고효율 무손실 스너버 (High Efficiency Lossless Snubber for Photovoltaic Maximum Power Point Tracker)

  • 장두희;강정일;한상규
    • 전력전자학회논문지
    • /
    • 제18권5호
    • /
    • pp.485-491
    • /
    • 2013
  • A new passive lossless snubber for boost converter based on magnetic coupling is proposed. It is composed of a winding coupled with boost inductor, one snubber inductor, two snubber capacitor and three additional diodes. Especially, the snubber inductor can not only limit the reverse recovery current of output diode but also minimize switch turn-on losses greatly. Moreover, all of the energy stored in the snubber is transferred to the load in the manner of resonance. To confirm the validity of proposed system, theoretical analysis, design consideration, and verification of experimental results are presented.

GaN HEMT를 적용한 3kW급 계통연계 태양광 인버터의 방열 설계 및 개발 (Development of a 3 kW Grid-tied PV Inverter With GaN HEMT Considering Thermal Considerations)

  • 한석규;노용수;현병조;박준성;주동명
    • 전력전자학회논문지
    • /
    • 제26권5호
    • /
    • pp.325-333
    • /
    • 2021
  • A 3 kW grid-tied PV inverter with Gallium nitride high-electron mobility transistor (GaN HEMT) for domestic commercialization was developed using boost converter and full-bridge inverter with LCL filter topology. Recently, many GaN HEMTs are manufactured as surface mount packages because of their lower parasitic inductance characteristic than standard TO (transistor outline) packages. A surface mount packaged GaN HEMT releases heat through either top or bottom cooling method. IGOT60R070D1 is selected as a key power semiconductor because it has a top cooling method and fairly low thermal resistances from junction to ambient. Its characteristics allow the design of a 3 kW inverter without forced convection, thereby providing great advantages in terms of easy maintenance and high reliability. 1EDF5673K is selected as a gate driver because its driving current and negative voltage output characteristics are highly optimized for IGOT60R070D1. An LCL filter with passive damping resistor is applied to attenuate the switching frequency harmonics to the grid-tied operation. The designed LCL filter parameters are validated with PSIM simulation. A prototype of 3 kW PV inverter with GaN HEMT is constructed to verify the performance of the power conversion system. It achieved high power density of 614 W/L and peak power efficiency of 99% for the boost converter and inverter.

전압 체배 정류단을 갖는 부스트 입력형 하프브리지 DC/DC 컨버터를 위한 새로운 전류 스트레스 저감 기법 (Novel Current Stress Reduction Technique for Boost Integrated Half-Bridge DC/DC Converter with Voltage Doubler Type Rectifier)

  • 박홍선;김정은;문건우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2006년도 전력전자학술대회 논문집
    • /
    • pp.39-42
    • /
    • 2006
  • a current stress reduction technique for a boost integrated half-bridge (BIHB) DC/DC converter with voltage doubler type rectifier is proposed for digital car audio amplifier application. In the proposed circuit, two external capacitors are added parallel to the rectifier diodes in the secondary side of the transformer to shape the primary and the secondary current like rectangular waveforms in every switching instance. The experimental results of a 200W industrial sample show that the peak primary current decreases about by 10A. Thus, the proposed technique shows improved high efficiency.

  • PDF