• Title/Summary/Keyword: High-density lipoprotein chole

Search Result 2, Processing Time 0.016 seconds

Cost-effectiveness Analysis of Pharmacologic Treatment in Hypercholesterolemia (고콜레스테롤혈증 치료 약물들에 대한 비용-효과 분석)

  • 정경래;문옥륜
    • Health Policy and Management
    • /
    • v.9 no.3
    • /
    • pp.70-94
    • /
    • 1999
  • This paper was performed for a cost-effectiveness analysis of pharmacologic treatment of hypercholesterolemia. Agents modeled were cholestyramine, gemfibrozil. bezafibrate, lovastatin, pravastatin, simvastatin. Pharmacologic effectiveness was estimated by regression from reported clinical trials. Pharmacologic effects were expressed as the percent change of blood cholesterol level. Cost estimates included patients' travel expenses and time loss as well as resource consumption in the health care sector. Bezafibrate was the most efficient agent for reducing total cholesterol levels, having an cost over 1 year of ₩31.400 per percent reduction in total cholesterol. Simvastatin (10mg/d) was also efficient(₩33,100 per percent reduction). Chole styramine(8g/d) was least efficient at ₩90,200. For low-density lipoprotein cholesterol. simvastatin(10mg/d) was most efficient, at ₩23,200 per percent reduction, followed by lovastatin(20mg/d) at ₩28,000. Gemfibrozil was least efficient at ₩77,800 per percent reduction. For high-density lipoprotein cholesterol. bezafibrate(400mg/d) was most efficient at ₩39,300 per percent increase of high-density lipoprotein cholesterol. Cholestyramine was least efficient at ₩514,700. Analyses combining low-density lipoprotein cholesterol and high-density cholesterol effects suggest that bezafibrate(600mg/d) and simvastatin (10mg/d) were most efficient for reducing cardiovascular risk. The cost-effectiveness analysis results show that both simvastatin and bezafibrate could be efficient treatment. Simvastatin provide more effective treatment at higher cost, whereas bezafibrate is more cost-effective, as it may be less effective, at lower cost. Therefore, clinicians should choose reasonable treatment according to the patient's needs This pharmacoeconimc analysis will provide a guideline for efficient pharmacologic treatment and also be reference data for pricing new drugs.

  • PDF

Effect of Dietary Iron Levels on Lipid Metabolism, Antioxidative and Antithrombogenic Capacities in 16-month-old Rats (식이 철분 수준이 노령흰쥐의 지방대사, 항산화능 및 항혈전능에 미치는 영향)

  • 김순기;박주연;김미경
    • Journal of Nutrition and Health
    • /
    • v.37 no.4
    • /
    • pp.273-280
    • /
    • 2004
  • This study was conducted to examine the effect of dietary iron levels on lipid metabolism, antioxidative and antithrombogenic capacities in 16-month-old rats. Thirty-two Sprague-Dawley male 16-month-old rats weighing 618 $\pm$ 6 g were raised for 10 days with medium-iron diet (35 ppm in diet) and blocked into 4 groups according to their body weights. One of groups was sacrificed to obtain initial data and the rest 3 groups were raised for 3 months with experimental diets containing different levels of iron (5 ppm, 35 ppm, and 350 ppm). Total lipid, triglyceride and total chole-sterol concentrations in plasma and liver, HDL-cholesterol concentration in plasma, fecal total lipid triglyceride and total cholesterol excretions, thiobarbituric acid reactive substances (TBARS) level in plasma LDL + VLDL (low density lipoprotein + very low density lipoprotein) fractions, blood-clotting time and eicosanoids levels in plasma were measured. The results are as follows: Plasma total lipid, triglyceride and total cholesterol concentrations, TBARS level in plasma LDL + VLDL fractions were increased and blood-clotting time tended to be shortened during 3 months of experimental period. Low (5 ppm) iron diet improved lipid metabolism via increasing HDL-cholesterol and fecal choles-terol excretion. High (350 ppm) iron diet decreased plasma total lipid, triglyceride and total cholesterol concentrations as compared to medium (35 ppm) iron diet and lowered body weight and epididymal fat pad weight. On the other hand, TBARS level in plasma LDL + VLDL fractions and blood-clotting time were increased with high iron diet. It is plausible that low iron diet improves lipid metabolism, antioxidative and antithrombogenic capacities in 16-month-old rats.