• 제목/요약/키워드: High-density compaction

검색결과 131건 처리시간 0.026초

Development of High Strength Sintered Steel by High Pressure Warm Compaction Using Die Wall Lubrication

  • Matsumoto, Nobuhiko;Miyake, Toshitake;Kondoh, Mikio;Ando, Kimihiko;Tanino, Hitoshi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.197-198
    • /
    • 2006
  • The high pressure compaction without internal lubricant and the high green density even with the pore free density were achieved by the newly developed die wall lubricant for warm compaction. This developed die wall lubricated warm compaction followed by high temperature sintering resulted in not only the superior mechanical property but also the low dimensional change. In this paper, the effects of increasing the green density on the sintered density, the dimensional change and the mechanical property are mainly discussed

  • PDF

Property of New SEGLESS that is Segregation-free Steel Powder Mixture for Warm Compaction

  • Nishida, Satoshi;Furuta, Satoshi
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.731-732
    • /
    • 2006
  • Recently warm compaction techniques are focused on and commercialization of one high-density compaction process in the P/M industry. Another development is a new SEGLESS using a developed lubricant that reduces ejection force at room temperature compaction. It is possible to achieve high-density by reducing lubricant amount. In this paper we confirmed that green density was $7.35g/cm^3$ at 686MPa of compaction pressure when the new SEGLESS was applied to relatively lower temperature warm compaction process, such as $80^{\circ}C$.

  • PDF

Influence of Mold Temperature, Lubricant and its Additional Quantity on Compressibility in Warm Compaction

  • Ushirozako, Tsutomu;Yamamoto, Masayuki
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.195-196
    • /
    • 2006
  • In recent years, demands for sintered ferrous material with higher strength are increasing. To satisfy these demands, studies and commercial use of the die wall lubrication method, the warm compaction method and the combination of both methods are widely carried out to achieve high density. The die wall lubrication warm compaction method makes it possible to achieve high density by reducing internal lubricant through die wall lubrication, although the method involves several issues such as prolonged cycle time due to lubricant spraying and difficulty in spraying lubricant in the case of compacting with complicated geometry. Meanwhile, the conventional warm compaction method requiring no die wall lubricant application cannot achieve such a high density as in the case of die wall lubrication warm compaction due to higher volume of internal lubricant. However, this report discloses our study result in which the possibility of improving density is exhibited by using a lubricant type with superior dynamic ejection property that can reduce volume of lubricant additive.

  • PDF

High Performance Iron Powder Mixes for High Density PM Applications

  • St-Laurent, Sylvain;Azzi, Lhoucine;Thomas, Yannig
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.740-741
    • /
    • 2006
  • The achievement of high density at reasonable cost is one of the major challenges of the P/M industry. One of the key factors contributing to the compressibility of a mix is the lubricant. New experimental lubricants enabling higher green density by conventional compaction or temperature-controlled die compaction were identified. The compaction and ejection characteristics of these new lubricants as measured with a fully instrumented lab press are presented and compared to that of conventional lubricants.

  • PDF

지르코니아 분말의 치밀화와 소결거동 : I. 가압에 따른 치밀화 응답 (Compaction and Sintering Behaviour of Zirconia Powders: I. Compaction Response)

  • 박홍채
    • 한국세라믹학회지
    • /
    • 제29권6호
    • /
    • pp.489-495
    • /
    • 1992
  • The continuous compaction response of zirconia powders prepared by different processing treatments was investigated. Though the yield point could be or not below 1 MPa, the change of slope was always observed at high pressure range around 60 MPa. Powder compaction was mainly governed by second compaction stage and compaction rate was decreased with increasing forming pressure. Rotary vacuum dried powder favored a high compaction density, whereas freeze dried and calcined powders favored an increase in the pressing efficiency. In order to extract more reliable information about powder compaction, it was necessary to use not only compaction response diagram but also compaction rate diagram.

  • PDF

초고압 성형을 통한 Mo 나노 분말의 치밀화 (Densification of Mo Nanopowders by Ultra High Pressure Compaction)

  • 안치형;최원준;박천웅;이승영;김영도
    • 한국재료학회지
    • /
    • 제28권3호
    • /
    • pp.166-173
    • /
    • 2018
  • Molybdenum (Mo) is one of the representative refractory metals for its high melting point, superior thermal conductivity, low density and low thermal expansion coefficient. However, due to its high melting point, it is necessary for Mo products to be fabricated at a high sintering temperature of over $1800-2000^{\circ}C$. Because this process is expensive and inefficient, studies to improve sintering property of Mo have been researched actively. In this study, we fabricated Mo nanopowders to lower the sintering temperature of Mo and tried to consolidate the Mo nanopowders through ultra high pressure compaction. We first fabricated Mo nanopowders by a mechano-chemical process to increase the specific surface area of the Mo powders. This process includes a high-energy ball milling step and a reduction step in a hydrogen atmosphere. We compacted the Mo nanopowders with ultra high pressure by magnetic pulsed compaction (MPC) before pressureless sintering. Through this process, we were able to improve the green density of the Mo compacts by more than 20 % and fabricate a high density Mo sintered body with more than a 95 % sintered density at relatively low temperature.

자기펄스 성형법에 의한 TiO2 나노 분말의 치밀화 (Densification of TiO2 Nano Powder by Magnetic Pulsed Compaction)

  • 김효섭;이정구;이창규;구자명;홍순직
    • 한국재료학회지
    • /
    • 제18권8호
    • /
    • pp.411-416
    • /
    • 2008
  • In this research, fine-structure TiO2 bulks were fabricated in a combined application of magnetic pulsed compaction (MPC) and subsequent sintering and their densification behavior was investigated. The obtained density of $TiO_2$ bulk prepared via the combined processes increased as the MPC pressure increased from 0.3 to 0.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7 GPa was attributed to the decrease of the inter-particle distance of the pre-compacted component. High pressure and rapid compaction using magnetic pulsed compaction reduced the shrinkage rate (about 10% in this case) of the sintered bulks compared to general processing (about 20%). The mixing conditions of PVA, water, and $TiO_2$ nano powder for the compaction of $TiO_2$ nano powder did not affect the density and shrinkage of the sintered bulks due to the high pressure of the MPC.

Tall fescue의 밀도변화에 미치는 토양경화와 공극률의 영향 (Effects of Soil Compaction and Artificial Pore Space on the Shoot Density of Tall Fescue)

  • 이주삼;윤용재;김성규;윤익석
    • 한국초지조사료학회지
    • /
    • 제7권2호
    • /
    • pp.109-112
    • /
    • 1987
  • tall fescue의 밀도변화에 미치는 토양경화는 공극율의 영향에 대하여 조사하였다. 1. 토양경화에 따라서 토양경도와 용적중은 증가되었다. (Table 1). 2. 10kg 처리구(토양경도 2.5kg/$\textrm{cm}^3$)의 밀도가 타처리구보다 유의하게 높았다. (Table 2, Fig. 1). 3. 토양공성율과 밀도와는 상관계수가 0.9804로써 1%수준의 정상란이 인정되었다. 4. 경화된 토양에서는 공성율이 37.5% 이상일 때 높은 밀도를 나타내었다.

  • PDF

기계화학적 합금화된 나노 Fe-6.5Si 분말의 자기 펄스압에 의한 동적성형 (Dynamic Compaction of Mechanochemically Alloyed Fe-Si Nano Powders by Magnetic Pulsed Pressure)

  • 이근희;이창규;김흥회;윤종운;이기선
    • 한국분말재료학회지
    • /
    • 제12권1호
    • /
    • pp.24-29
    • /
    • 2005
  • Nano Fe-6.5wt%Si powders have been synthesized by mechano-chemical process (MCP) for an application of soft magnetic core. Owing to hard and brittle characteristics of Fe-6.5Si nano powders having large surface area, it is very difficult to reach high density more than 70% of theoretical density (~7.4 g/$cm_3$) by cold compaction. To overcome such problem a magnetic pulsed compaction (MPC), which is one of dynamic compaction techniques, was applied. The green density was achieved about 78% (~5.8 g/$cm_3$) by MPC at room temperature.

성토재료로 부적합한 현장 발생토의 토목섬유 보강효과에 관한 실험적 연구 (Experimental Study on Reinforcement Effect of Geosynthetics for Surplus Soil, an Unsuitable Fill Material)

  • 홍용석;임종철;강상균;유재원;김창영
    • 한국지반신소재학회논문집
    • /
    • 제17권1호
    • /
    • pp.11-20
    • /
    • 2018
  • 양호한 성토재료는 현장에서 즉시 입수가 곤란하고 재료의 확보를 위한 추가적인 비용이 발생하여 각 현장에서는 현장 발생토를 직접 사용하는 경우가 많지만, 현장 발생토는 대부분 성토재료의 기준에 적합하지 않기 때문에 성토체의 안정성이나 강성을 확보하는데 어려움이 있다. 본 연구에서는 성토재료로 부적합한 흙의 다짐시 발생하는 문제점들을 개선하기 위하여 토목섬유를 보강하여 실내다짐시험과 현장다짐실험을 하였다. 실내다짐시험(KS F 2312)의 A, D다짐시험과 A다짐시험에서 다짐에너지와 토목섬유의 보강 층수를 다르게 하였고, 현장다짐실험은 함수비가 높은 현장 발생토에 토목섬유를 보강하고 다짐을 실시하였다. 그 결과, 실내다짐시험에서는 토목섬유를 보강함으로써 최적함수비는 감소, 최대건조밀도 증가하여 다짐곡선은 다짐에너지를 증가시켜 다짐한 경우와 비슷한 거동을 하였고, 건조밀도와 다짐에너지의 관계로부터 다짐에너지는 토목섬유를 1열, 2열 보강하였을 때 각각 평균 2.10배, 평균 2.71배 증가하여 토목섬유를 보강하고 다짐하면 큰 다짐에너지로 다짐한 것과 같은 효과로 더 효율적인 다짐이 가능한 것으로 분석되었다. 그리고 현장다짐실험에서 토목섬유를 보강함으로써 건조밀도는 증가하는 것으로 분석되어 다짐시 토목섬유를 보강하여 다짐을 실시하면 함수비가 높고 성토재료로 부적합한 현장 발생토를 사용하더라도 효율적인 다짐이 가능한 것으로 입증되었다.