• Title/Summary/Keyword: High-bulk yarn

Search Result 2, Processing Time 0.018 seconds

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • v.7 no.3
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

Physical Properties of Ultra-fine Denier Filament Yarn Fabric

  • Kim, Jong-Jun;Son, Yang-Kug
    • Journal of Fashion Business
    • /
    • v.10 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Various high-touch textile products have been developed recently including ultra-fine denier filament yarn fabrics. The touch or hand of high value-added products is of prime importance. Physical and mechanical properties of fabric specimens, ultra-fine denier filament yarn fabric specimen, 100% wool fabric and wool/polyester 50:50 fabric,were measured using the KES. Compressibility of the ultra-fine denier fabric is recommendable, possibly due to the good bulk property of the specimen. Overall, the THV of the ultra-fine denier fabric is positioned between those of the 100% wool fabric and wool/polyester 50:50 fabric. Observed differences in the physical and mechanical properties explain the fabric specimen characteristics reasonably.