• Title/Summary/Keyword: High-Voltage Power Transmission Tower

Search Result 13, Processing Time 0.025 seconds

Capacity assessment of existing corroded overhead power line structures subjected to synoptic winds

  • Niu, Huawei;Li, Xuan;Zhang, Wei
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.325-336
    • /
    • 2018
  • The physical infrastructure of the power systems, including the high-voltage transmission towers and lines as well as the poles and wires for power distribution at a lower voltage level, is critical for the resilience of the community since the failures or nonfunctioning of these structures could introduce large area power outages under the extreme weather events. In the current engineering practices, single circuit lattice steel towers linked by transmission lines are widely used to form power transmission systems. After years of service and continues interactions with natural and built environment, progressive damages accumulate at various structural details and could gradually change the structural performance. This study is to evaluate the typical existing transmission tower-line system subjected to synoptic winds (atmospheric boundary layer winds). Effects from the possible corrosion penetration on the structural members of the transmission towers and the aerodynamic damping force on the conductors are evaluated. However, corrosion in connections is not included. Meanwhile, corrosion on the structural members is assumed to be evenly distributed. Wind loads are calculated based on the codes used for synoptic winds and the wind tunnel experiments were carried out to obtain the drag coefficients for different panels of the transmission towers as well as for the transmission lines. Sensitivity analysis is carried out based upon the incremental dynamic analysis (IDA) to evaluate the structural capacity of the transmission tower-line system for different corrosion and loading conditions. Meanwhile, extreme value analysis is also performed to further estimate the short-term extreme response of the transmission tower-line system.

The Study of Steady-State Interaction Between AC and DC Lines on the Same Transmission Tower (AC 및 DC 송전 선로 병렬 연계에 따른 정상상태 커플링 영향 분석)

  • Yoon, Jong-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1221-1225
    • /
    • 2010
  • The application of the AC and DC lines on the same transmission tower is an economical and practical approaching that increase the power transmission capacity of an existing transmission corridor. But, In this case, Inductive and capacitive coupling between AC and DC lines on the same tower should be investigated in advance. According to the installation plan of 80kV ${\pm}$60MW bipole HVDC in Cheju, KOREA that will be commissioned until 2011, DC lines will parallely operate with 154kV 2 AC lines in existed 154kV AC 4 lines transmission tower. This paper presents the steady state analysis results about the interaction between 154kV AC and 80kV DC lines in the same transmission tower.

The Study of Transient Coupling between AC and DC lines on the Same Transmission Tower (AC 및 DC 송전선로 과도상태 커플링 영향 분석)

  • Yoon, Jong-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.14-19
    • /
    • 2011
  • The implemetation of the AC and DC lines on the same transmission tower is an economical and practical approaching that increase the power transmission capacity of an existing transmission corridor. But, In this case, Inductive and capacitive coupling between AC and DC lines on the same tower should be investigated in advance. According to the installation plan of ${\pm}80kV$ 60MW bipole HVDC in Jeju island, KOREA that will be commissioned until 2011, DC lines will parallely operate with 154kV 2 AC lines in existed 154kV AC 4 lines transmission tower. This paper presents the transient analysis results about the interaction between 154kV AC and 80kV DC lines in the same transmission tower.

Evaluating the Perception of Distance to High-Voltage Power Lines from Home Using Transmission and Substation Geographic Information System (송변전 지리정보 시스템을 이용한 고압 송전선과 거주지 간 이격거리에 대한 인식 평가)

  • Ock, Minsu;Lee, Moo-Song;Jeon, Bomin;Kim, Hwa Jung;Ryu, Hyun Mi;Myung, Sung-Ho;Min, Suk Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.7
    • /
    • pp.646-655
    • /
    • 2015
  • The purpose of this study was to evaluate the perceived distance from home to high-voltage power lines using a transmission and substation geographic information system(TGIS). Of the 725, 136 respondents reported that high voltage power transmission tower, power lines or substation was within visual field range from home. Among them, 114 respondents reported valid address, which could be used in the analysis of TGIS. Forty two respondents(36.8 %) estimated that the power lines were closer and 15 respondents(13.2 %) estimated that they were farther than they actually were. Our current findings suggest that the reported distance from home to high-voltage power transmission towers, power lines, and substations cannot be used as a proxy for exposure to electromagnetic fields due to the low validity.

High-Power-Density Power Conversion Systems for HVDC-Connected Offshore Wind Farms

  • Parastar, Amir;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.737-745
    • /
    • 2013
  • Offshore wind farms are rapidly growing owing to their comparatively more stable wind conditions than onshore and land-based wind farms. The power capacity of offshore wind turbines has been increased to 5MW in order to capture a larger amount of wind energy, which results in an increase of each component's size. Furthermore, the weight of the marine turbine components installed in the nacelle directly influences the total mechanical design, as well as the operation and maintenance (O&M) costs. A reduction in the weight of the nacelle allows for cost-effective tower and foundation structures. On the other hand, longer transmission distances from an offshore wind turbine to the load leads to higher energy losses. In this regard, DC transmission is more useful than AC transmission in terms of efficiency because no reactive power is generated/consumed by DC transmission cables. This paper describes some of the challenges and difficulties faced in designing high-power-density power conversion systems (HPDPCSs) for offshore wind turbines. A new approach for high gain/high voltage systems is introduced using transformerless power conversion technologies. Finally, the proposed converter is evaluated in terms of step-up conversion ratio, device number, modulation, and costs.

Analysis of Conductive Interference nearby High Voltage Power Lines under Fault Condition (송전선로 지락시 철탑 인근의 대지전위간섭 해석모델)

  • Choi, J.K.;Lee, W.K.;Ryu, H.Y.;Shin, B.H.;Son, K.M.;Kim, T.Y.;Hwang, G.C.
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.466-467
    • /
    • 2008
  • In case of a line-to-ground fault at transmission lines, a portion of fault current will flow into the earth through the footings of the faulted tower causing electrical potential rise nearby the faulted tower footings. In this situation, any buried pipelines or structures nearby the faulted tower can be exposed to the electrical stress by earth potential rise. Although many research works has been conducted on this phenomena, there has been no clear answer of the required separation distance between tower footings and neary buried pipeline because of its dependancy on the soil electrical charactersics of the concerned area and the faulted system.

  • PDF

A Random Forest Model Based Pollution Severity Classification Scheme of High Voltage Transmission Line Insulators

  • Kannan, K.;Shivakumar, R.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.951-960
    • /
    • 2016
  • Tower insulators in electric power transmission network play a crucial role in preserving the reliability of the system. Electrical utilities frequently face the problem of flashover of insulators due to pollution deposition on their surface. Several research works based on leakage current (LC) measurement has been already carried out in developing diagnostic techniques for these insulators. Since the LC signal is highly intermittent in nature, estimation of pollution severity based on LC signal measurement over a short period of time will not produce accurate results. Reports on the measurement and analysis of LC signals over a long period of time is scanty. This paper attempts to use Random Forest (RF) classifier, which produces accurate results on large data bases, to analyze the pollution severity of high voltage tower insulators. Leakage current characteristics over a long period of time were measured in the laboratory on porcelain insulator. Pollution experiments were conducted at 11 kV AC voltage. Time domain analysis and wavelet transform technique were used to extract both basic features and histogram features of the LC signal. RF model was trained and tested with a variety of LC signals measured over a lengthy period of time and it is noticed that the proposed RF model based pollution severity classifier is efficient and will be helpful to electrical utilities for real time implementation.

Measurement and Analysis of the Magnetic Fields Magnitude under High Voltage Transmission Lines (초고압 송전선로의 자계크기 실측과 해석)

  • Cho, Sung-Bae;Lee, Eun-Woong;Lee, Min-Myung
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1583-1585
    • /
    • 1998
  • EMF measurements for the selected lines by a kinds of tower configurations conductors among 154kV, 345kV transmission lines which are a standard forms of high voltage transmission line in Domestic are performed at the field. Based on these measurings, Co-relation of both the Power current and the magnetic field strength is studed. compared of measured and calculated magnetic magnitude. and Using the measured equation obtained from field measuring, Magnetic field exposure value occurring under T/L for one year(1997) is presented.

  • PDF

The effects of congestion cost reduction by the application of Superconducting cable (초전도케이블에 의한 전력계통의 혼잡비용 저감 효과)

  • Kim, Hyun-Houng;Lee, Geun-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.66-68
    • /
    • 2005
  • In Korea power system, the transfer capability of transmission line is limited by the voltage stability and it is difficult to construct new iron tower due to incremental interest for environmental problem and construction costs. Recently, HTS cable could be one of the countermeasures to solve the transfer limit because of it is transported to large power with compact size However, the characteristic of HTS cable have a various problem. This paper presents the effects of congestion cost reduction by the application of HTS (High-Temperature Superconducting) cable. In this paper, the transmission ability before and after application of HTS cable are examined in a viewpoint for voltage stability. therefore, the effects of congestion cost reduction by HTS cable.

  • PDF

Analysis and Comparision of Measured and Calculated Value on Magnetic Fields Strength under Transmission Lines (초고압 송전선로의 자계크기 해석과 실측 비교)

  • Cho, Sung-Bae;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.7
    • /
    • pp.832-838
    • /
    • 1999
  • Recently, there are growing concerns about power frequency electric and magnetic fields coming out from the high voltage transmission lines, because of the wide spread perception of their probable harmful effect on human body. In connection with this trend, this paper describes the electric and magnetic fields measurement result around 154 kV and 345 kV transmission lines, a comparison of measured EMF to calculated one and the correlations between transmission lines currents and measured magnetic fields. Daily maximum and minimum magnetic field quantities under the selected 154 kV and 345 kV transmission lines had been measured for 1 year of 1997 and the average value of magnetic field exposure under the lines were calculated and presented based on the measured data.

  • PDF