• Title/Summary/Keyword: High-Temperature Superconductor

Search Result 389, Processing Time 0.032 seconds

Development of Large-sized YBCO High Temperature Superconductor Bulk Magnets and Actuator (대면적 YBCO 고온 초전도 벌크 자석 및 조작기 개발)

  • Han, Sang-Chul;Park, Byung-Jun;Jung, Se-Yong;Han, Young-Hee;Lee, Jong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.7
    • /
    • pp.450-455
    • /
    • 2015
  • For the practical application of a YBCO superconductor bulk, the superconductor bulk magnet with high magnetic field on a large area surface should be fabricated. To make this, YBCO single crystal bulks with fine $Y_2BaCuO_5$(Y211) particles have been prepared by the top-seed melt growth(TSMG) method with $YBa_2Cu_3O_x$, $Y_2O_3$, and $CeO_2$ mixing precursor. By using $Y_2O_3$ instead of $Y_2BaCuO_5$ as precursor, the manufacturing process became simpler and more economical. The microstructures, trapped field and critical current density of the various conditioned YBCO bulks have been observed, analyzed and measured. The different characteristic values of the several samples have been analyzed from the viewpoint of their microstructures. We have developed a $8{\times}12cm$ size superconductor bulk magnet, up to 3 T class, by using the 4 T class-high field superconducting magnetizer and confirmed the applicability of the transmission level circuit breakers by measuring the strength and speed of the superconductor bulk magnet actuator.

AC Loss Characteristics of a Single-layered Cylindrical High Temperature Superconductor (단층원통형 고온초전도도체의 교류손실 특성)

  • Ma, Yong-Hu;Li, Zhu-Yong;Ryu, Kyung-Woo;Sohn, Song-Ho;Hwang, Si-Dol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.626-630
    • /
    • 2007
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables and fault current limiters. In these applications, a cylindrical HTS conductor is often used. In commercialization of these apparatuses, AC loss is a critical factor but not elucidated completely because of complexities in its measurement, e.g. non-uniform current distribution and phase difference between currents flowing in an individual HTS tape. We have prepared two cylindrical conductors composed of a Bi-2223 tape with different critical current density. In this paper, the AC loss characteristics of the conductors have been experimentally investigated and numerically analyzed. The result show that the measured losses for two conductors are not dependent on both arrangements and contact positions of a voltage lead. This implies that most of loss flux is only in the conductors. The loss for the Bi-2223 conductor with low critical current density is in good agreement with the calculated loss from Monoblock model, whereas the loss measured for the Bi-2223 conductor with high critical current density doesn't coincide with the loss calculated from the Monoblock model. The measured loss is also different from numerically calculated one based on the polygon model especially in low transport current.

Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System (초전도 저널베어링 Substator의 특성평가)

  • Park, B.J.;Jung, S.Y.;Lee, J.P.;Park, B.C.;Jeong, N.H.;Sung, T.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2008
  • A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  • PDF

Preparation of YBa2Cu3O7-y Superconductor Using Melt Method (용융법에 의한 YBa2Cu3O7-y 초전도체 제작)

  • Lee, Sang Heon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.622-625
    • /
    • 2022
  • YBa2Cu3O7-y bulk as a high temperature oxide superconducting conductor has the high critical temperature of 92 K. YBa2Cu3O7-y bulk superconductors have been fabricated by a seeded melting growth. Magnetic properties were studied by using superconductor of melted YBa2Cu3O7-y oxides. It was demonstrated that Y2BaCuO5 particles acts as a pinning center which plays an important role on the magnetic properties. The thickness of the upper and lower pellets of the YBa2Cu3O7-y bulk was formed at 40 mm with 55 g of the composition, and the YBa2Cu3O7-y superconductor was manufactured through a heat treatment process. Manufacturing the superconducting bulk, it is possible to improve the pore density of the superconducting bulk by providing a path through which oxygen could be emitted.

Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System (10 kWh급 초전도 플라이휠 베어링의 강성 평가)

  • Park, B.J.;Jung, S.Y.;Lee, J.P.;Park, B.C.;Kim, C.H.;Han, S.C.;Du, S.G.;Sung, T.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.57-61
    • /
    • 2009
  • A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  • PDF

Quench and recovery characteristics of HTS film after fault current (과도전류 후의 고온초전도체 박막의 퀜치/회복 특성)

  • 박을주;김진석;설승윤
    • Progress in Superconductivity and Cryogenics
    • /
    • v.5 no.2
    • /
    • pp.16-19
    • /
    • 2003
  • Quench and recovery process of high-temperature-superconductor (HTS) film deposited on the sapphire substrate is studied numerically. The quench is developed by fault current and the superconductivity is recovered by convection of heat into coolant. After the fault current. the HTS film experiences the quench state. current sharing state. and finally recovers the superconductivity. Numerical results of this study are compared to the previous experimental results. and shows that this numerical work can explain the mechanism of quench/recovery characteristics of HTS film.

Ceramics superconducting Energy Materials (세라믹 에너지 재료)

  • Lee, Sang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1238-1239
    • /
    • 2008
  • The high Tc supeconductor of ceramic oxides type was studied for finding its application field. The results reportaed in this paper on the stability of the ceramic superconductors and the resistance to ripening in the BCO liquid phase at elevated temperature opens a processing window for engineering the microstructure of large superconductor at the nanoscale level. The results suggest further that the introduction of highly efficient artifical pinning center to bulk ceramics superconductor.

  • PDF

BSCCO Superconducting Powder by SHS

  • Soh, Dea-Wha;Cho, Yong-Joon;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.99-102
    • /
    • 2002
  • The BSCCO superconductor materials of using Self-propagating High-temperature Synthesis (SHS) were studied. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product. In this paper as an effort for fabricating the SHSed BSCCO superconductor powder SHS method was considered to application in the synthesis of superconducting materials.

  • PDF

Quench and recovery characteristics of HTS film after fault current (고온초전도체 박막의 퀜치/회복 특성)

  • 설승윤;김진석;박을주
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.181-184
    • /
    • 2003
  • Quench and recovery process of high-temperature -superconductor (HTS) film deposited on the sapphire substrate is studied numerically. The quench is developed by fault current and the superconductivity is recovered by convection of heat into coolant. After the fault current, the HTS film experiences the quench state, current sharing state, and finally recovers the superconductivity. Numerical results of this study are compared to the previous experimental results, and shows that this numerical work can explain the mechanism of quench/recovery characteristics of HTS film.

  • PDF