• Title/Summary/Keyword: High-Temperature Air Combustion

Search Result 330, Processing Time 0.029 seconds

Spray combustion with high temperature air in a Gas Turbine Combustor (가스터빈 연소기내의 고온공기 분무연소 해석)

  • Jo, Sang-Pil;Kim, Ho-Young;Park, Sim-Soo
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.192-198
    • /
    • 2004
  • A numerical study was conducted to determine the effects of high temperature air, including equivalent ratio on flow field, temperature, evaporation, and overall temperature distribution in gas turbine combustor. A sector model of a typical wall jet can combustor, featuring introduction of primary air and dilution air via wall jet, was used in calculations. Flow field and temperature distribution were analyzed. Operating conditions such as inlet temperature and overall equivalent ratio were varied from 373 to 1300 K, and from 0.3 to 0.6, respectively, while any other operating conditions were fixed. The RNG ${\kappa}-{\varepsilon}$ model and eddy breakup model were used for turbulence and combustion model respectively. It was found that the increase with the inlet air temperature, velocity in the combustor is accelerated and evaporation of liquid fuel is not affected in primary zone, high temperature inlet air enhances the evaporation and improves overall temperature distribution factor.

  • PDF

Computational Study of the MILD Combustion and Pollutant Emission Characteristics in Jet Flow Field (제트 유동장에서의 마일드 연소 및 오염물질 배출특성에 관한 전산해석 연구)

  • Kim, Yu Jeong;Song, Keum Mi;Oh, Chang Bo
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.4
    • /
    • pp.60-65
    • /
    • 2012
  • The MILD combustion and pollutant emission characteristics were investigated computationally. The temperature of supplying air-stream and mixing rate (${\Omega}$) of exhaust gas in the air-stream were adjusted to investigate the effects of those parameters on the MILD combustion in jet flow field. The emission indices for NO (EINO) and CO (EICO) were introduced to quantify the amount of those species emitted from the combustion. The high-temperature region disappeared gradually as the mixing rate increased for fixed air-stream temperature. The EINO increased as the air-stream temperature became higher for fixed mixing rate, and the EINO decreased dramatically with increasing the mixing rate for each air-stream temperature condition. The EICO also decreased with increasing the mixing rate and it was nearly independent of air-stream temperature except for near ${\Omega}$ = 0.7. It was found that the CO supplied in the air-stream can be destroyed in the MILD combustion over the certain mixing rate.

Combustion Characteristics of Flameless Combustion by Reactants Injection Conditions (반응물 분사조건에 따른 무화염 연소특성 연구)

  • Hong, Seong Weon;Lee, Pil Hyong;Hwang, Sang Soon
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.8-16
    • /
    • 2013
  • The flameless combustion has been considered as one of the promising combustion technology for high thermal efficiency, reducing NOx and CO emissions. In this paper, the effect of air and fuel injection condition on formation of flameless combustion was analyzed using three dimensional numerical simulation. The results show that the high temperature region and the average temperature was decreased due to increase of recirculation ratio when air velocity is increased. The average temperature was also affected by entrainment length. Generally mixing effect was enhanced at low entrainment length and dilution was dominated at high entrainment length. This entrainment length was greatly affected by air and fuel injection velocity and distance between air and fuel. It is also found that the recirculation ratio and dilution effect were generally increased by entrainment length and the recirculation ratio, mixing and dilution effect are the significant factor for design of flameless combustion system.

The Characteristics of Pulverized Coal Combustion in the Two Stage Cyclone Combustor

  • Joo, Nahm-Roh;Kim, Ho-Young;Chung, Jin-Taek;Park, Sang-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1112-1120
    • /
    • 2002
  • Numerical investigations on air staging and fuel staging were carried out with a newly designed coaxial cyclone combustor, which uses the method of two stage coal combustion composed of pre-combustor and main combustor. The pre-combustor with a high air/fuel ratio is designed to supply gas at high temperature to the main combustor. To avoid local high temperature region in this process, secondary air is injected in the downstream. Together with the burned gas supplied from the pre-combustor and the preheated air directly injected into main combustor, coals supplied through the main burner react rapidly at a low air/fuel ratio. Strong swirling motion of cyclone combustor keeps the wall temperature high, which makes slagging combustion possible. Alaska, US coal is used for calculations. Predictions were made for various coal flow rates in the main combustor for fuel staging and for the various flow rate of secondary air in the pre-combustor for air staging. In-scattering angles are also chosen as a variable to increase residence times of coal particles. Temperature fields and particle trajectories for various conditions are described. Predicted temperature variations at the wall of the combustor are compared with corresponding experimental data and show a similar trend. The in-scattering angle of 20° is recommended to increase the combustion efficiency in the main chamber.

Study on Characteristics of Spray Combustion for Various Operation Conditions in a Gas Turbine Combustor (가스터빈 연소기 내 운전조건 변화에 따른 분무연소 특성 연구)

  • Cho, S.P.;Kim, H.Y.;Park, S.
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.3-10
    • /
    • 2002
  • In this work, numerical parametric studies on spray combustion have been conducted. In simulation of turbulence, RNG ${\kappa}-{\varepsilon}model$ is adopted. Initial spray distribution is specified by Rosin-Rammler distribution function. Eddy break-up model is adopted as a combustion model. The parameters considered are inlet air temperature, swirl number, and SMD. With higher inlet air temperature, the axial velocities are increased and penetration of primary jet is stronger than that of lower inlet air temperature and temperature at the exit of combustor is more uniform. Combustion efficiency is improved with high inlet air temperature. The effect of swirl number on flow field is not significant. It affect only recirculation zone. So temperature at upstream of combustor is influenced. Combustion efficiency deteriorate as SMD of fuel spray increase.

  • PDF

Characteristics of the Spray and Combustion in the Liquid Jet (고온, 고속기류 중에 수직 분사되는 연료제트의 분무 및 연소특성)

  • Youn, H.J.;Lee, G.S.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.7 no.3
    • /
    • pp.12-17
    • /
    • 2002
  • In this paper, spray and combustion characteristics of a liquid-fueled ramjet engine were experimentally investigated. The spray penetrations were measured to clarify the spray characteristics of a liguid jet injected transversely into the subsonic vitiated airstream, which is maintained a high velocity and temperature. The spray penetrations are increased with decreasing airstream velocity, increasing airstream temperature, and increasing air-fuel momentum ratio. To compensate our results of penetrations, the new experimental equation were modified from Inamura's equation. In the case of insufficient penetration, the combustion phenomenon in ram-combustor were unstable. Therefore, the temperature distribution was slanted to the low wall of the ram-combustor. These trends gradually disappeared as the length and air temperature of the combustor became longer. Combustion efficiency increased when the length of the combustor was long and the air temperature was high. Especially, stable flame region is enlarged when the length of the combustor was long and the air temperature was high. Type Abstract here. Type Abstract here.

  • PDF

An Experimental Study on Oil Combustion Technology with High Temperature Preheated Air (고온공기이용 오일 연소기술)

  • 김원배;양제복
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2002.11a
    • /
    • pp.17-23
    • /
    • 2002
  • The objective of this study is to develop a new oil combustion technology concerning industrial furnaces and kilns, not only to save energy but also to reduce environmental emissions. Of many kinds of such technologies we chose the high temperature air combustion technology which was initiated by the British steel company in '80s and developed further by the American burner company "North American". In this study it was carried out to test regenerative burner experimentally and to have an applicability to industry. From the variation of configuration of gas nozzle and hot test on the temperature distribution and NOx, it was found out that the reduction of NOx was due to the effect of internal gas recirculation, which will be caused by air emitting velocity from burner nozzle.

  • PDF

Numerical Study on the Application of High Temperature Catalytic Combustion to a Gas Turbine (고온촉매연소의 가스터빈 적용에 관한 수치적 연구)

  • Kim, Hyung-Man;Jeun, Ho-Sig;Jang, Seok-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.989-994
    • /
    • 2001
  • Numerical simulations of high temperature catalytic combustion have been performed for the application to a gas turbine combustor. Dependences of inlet temperature and pressure on the distributions of temperature and species concentrations were investigated using plug flow model with detailed homogeneous and heterogeneous chemistries of methane-air mixtures. Honeycomb typecombustor deposited with Pt catalyst of 100mm in length and 26mm in diameter is used. The results show that rapid increase of temperature profile occurs earlier with the increase of inlet temperature and the decrease of inlet pressure. The condition which catalytic combustion is stabilized exists at certain range of inlet temperature and pressure. The state of catalytic combustion is also confirmed by the distributions of species concentration.

  • PDF

The Effect of Flue-gas Recirculation on Combustion Characteristics of Self Regenerative Low NOx Burner (자기축열식 저 NOx 연소기에서 배가스 재순환이 연소특성에 미치는 영향)

  • Kang, Min-Wook;Kim, Jong-Gyu;Dong, Sang-Keun;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • The conventional regenerative system has a high thermal efficiency as well as energy saving using the high preheated combustion air. in spite of these advantages, it can not avoid high nitric oxide emissions. Recently, flameless combustion has received much attention to solve these problems. In this research, numerical analysis is performed for flow-combustion phenomena in the self regenerative burner. In this analysis we used Fluent 6.0 code. the that is developed for commercial use, Methane gas is used as a fuel and two-step reaction model for methane and Zeldovich mechanism for NO generation are used. the velocity of the preheated combustion air is used as a parameter and we analyze the characteristics of flow-field, temperature distributions and NO emissions. Due to the increased recirculation rate, the maximum temperature of flame is significantly increased and NOx emissions is reduced.

  • PDF

A Numerical Study on a High-Temperature Air Combustion Burner for a Compact Fuel-Cell Reformer (연료전기용 컴팩트형 개질기의 고성능화를 위한 고온 공기 연소 기술의 적용에 관한 연구)

  • Lee, Kyoung-Ho;Kwon, Oh-Chae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.3
    • /
    • pp.229-237
    • /
    • 2005
  • A new burner configuration for a compact fuel-cell reformer with a high-temperature air combustion concept was numerically studied. The burner was designed for a 40 $Nm^3/hr$ hydrogen-generated reformer using natural gas-steam reforming method. In order to satisfy the primary requirements for designing a reformer burner (uniform distribution of temperature along the fuel processor walls and minimum heat losses from the reformer), the features of the present burner configuration included 1) a self-regenerative burner for an exhaust-gas-recirculation to apply for the high-temperature air combustion concept, and 2) an annular-type shield for protecting direct contact of flame with the processor walls. For the injection velocities of the recirculated gas of 0.6-2.4 m/s, the recirculated gas temperature of 1000 K, and the recirculated oxygen mole fraction of 4%, the temperature distributions along the processor walls were found uniform within 100 K variation. Thus, the present burner configuration satisfied the requirement for reducing temperature gradients along the processor walls, and consequently demonstrated that the high-temperature air combustion concept could be applied to the practical fuel reformers for use of fuel cells. The uniformity of temperature distribution is enhanced as the amount of the recirculated gas increases.