• Title/Summary/Keyword: High-Strength Re-bar

Search Result 27, Processing Time 0.02 seconds

Spatting Resistance of High Strength RC Column Covering Spray-on Materials of Fiber Composite Spray Mortar(FCSM) (섬유복합모르터의 뿜칠마감에 의한 고강도콘크리트 기둥부재의 폭렬방지)

  • Song Yong-Won;Han Dong-Yeob;Lee Gun-Cheol;Goh Kyoung-Taek;Kim Jin-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.5-8
    • /
    • 2006
  • High strength concrete has been increasingly used in high rue building and it is very obvious re consider fire resistance performance of that. Unlike the normal strength concrete, high strength concrete in sudden elevating temperature at fire is susceptible to spalling with severe explosion and surface split, due to high density of concrete. In order to endure the spalling, inner space temperature of concrete should be control less than certain point. Therefore this study investigated the influence of covering materials on high strength concrete finishing spray-on materials of fiber composite spray mortar(FCSM). Both polypropylene(PP) and polyvinyl alcohol(PVA) fiber were used in this test. Test showed that concrete, covering 18mm mortar containing PVA fiber and confining metal lath 2.3mm thickness, decreased 50% of main bar ambient temperature. compared with control concrete. In addition, concrete covering 18mm mortar without fiber caused falling of covering materials and then it was exposed in elevating temperature. As a result, spatting of the concrete occurred same as control concrete. However, concrete covering spray-on mortar containing PVA or PP fiber resisted spatting occurrence.

  • PDF

Performance Evaluation Test of the flexural members of High-Strength Reinforcing Bars for Nuclear Power Plant Structure (원전 구조물의 고강도 철근 설계기준 적용을 위한 휨부재 평가 실험)

  • Lim, Sang-Joon;Kim, Seok-Chul;Lee, Han-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.203-204
    • /
    • 2012
  • One of the advantages using High-Strength steel reinforcement in construction is the economic effect due to the decreasing of its quantity. Also, another good effect is the increases of workability by reason of reducing the congestion. This study explain plan of experiment after analysing of ACI 318, 349, 359 to develop 550MPa re-bar design criteria applicable to flexural members of nuclear power plants.

  • PDF

Comparison of Pure Reinforcement Quantity to Development & Splice Reinforcement Quantity using High-strength Reinforcing Bars (고강도 철근 사용에 따른 순수 철근량에 대한 정착 및 이음 철근량 비교)

  • Cho, Seung-Ho;Na, Seung-Uk;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.72-80
    • /
    • 2018
  • Whilst it is common to construct high-rise buildings and long-span structures in the construction and building industry, there might be a number of problems such as excessive re-bars arrangement, deterioration of concrete quality, unnecessary quantity take-off and so forth. As these types of buildings and structures are getting more popular, it is widespread to apply high-strength materials such as high-strength concrete and re-bars to sustain durability and stability. This research aims to investigate the effectiveness of the high-strength reinforcing bars on the underground parking in a rigid-frame structure. In this study, the reinforcing bars with different yield strength were applied to corroborate the usefulness and practicability of the high-strength re-bars on the underground parking in a rigid-frame structure. The test results show that the quantity of reinforcement bars is lowered, as the yield strength of the re-bars are grown in general. However, the quantity of reinforcement bars on the development and splice has a tendency to increase slightly. Despite of the increase of the development and splice, the total quantity of reinforcing bars was reduced since the increasing ration of the pure quantity is higher than the development and splice. Base on the test results, it would be possible to achieve the reduction of reinforcing bars arrangement and lowering the amount of work to be done during a construction phase. Moreover, the reduced amount of bar arrangement will make it possible to improve workability and constructability of reinforced concrete structures. Ultimately, we will be able to attain improved quality and efficiency of construction using reinforced concrete.

An Experimental Study on the Flexural Ductility of Doubly Reinforced Concrete Beams with Different Concrete Strength (콘크리트 압축강도변화에 따른 철근 콘크리트 보의 휨연성 거동에 관한 실험적연구)

  • 박승종;김용부
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.131-140
    • /
    • 1999
  • This paper presents a study on the flexural ductility of reinforced concrete beams, 16beams with different concrete strength, reinforcement ratio, reinfo- rcement strength. For the purpose of inducing flexural failure, the reinforce ratio ($\rho$-$\rho$') was made not to be more than $0.75\rho$b in accordance with ACi code 318-89. From the test results, it is found that in case of a concrete strength increased from 240 to 650kg/$\textrm{cm}^2$, the displacement and curvature ductility factore are increased by about 31-231 percents. And also increased in case of increased from 650 to 900kg/$\textrm{cm}^2$, but the increasing ratio is gradually decreasing accoding to a concrete strength increases. And also found that as the Double Re-bar Ratio (($\rho$-$\rho$')/$\rho$b) increases, so the displacement and curvature ductility ratio would decrease, but in case of increased from 650 to /$900kg\textrm{cm}^2$ the decreasing ration is bigger than in case of increased from 240 to $650kg/\textrm{cm}^2$.

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.

Seismic Performance of Beam-Column Connections for Special Moment Frame Using 600 MPa Flexural Reinforcement (600 MPa 휨 철근을 사용한 특수 모멘트 골조의 보-기둥 접합부의 내진성능)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Choi, Won-Seok;Chung, Lan;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.591-601
    • /
    • 2011
  • An experimental study was performed to evaluate the seismic performance of beam-column connections using 600 MPa re-bars for beam flexural reinforcement. Three full scale specimens of interior beam-column connection and two specimens of exterior beam-column connection were tested under cyclic loading. The specimens were designed to satisfy the requirements of Special Moment Frame according to current design code. The structural performance of the specimens with 600 MPa re-bar were compared with that of the specimen with 400 MPa re-bars. The test results showed that bond-slip increased in the beam-column joint. However, the load-carrying capacity, deformation capacity, and energy dissipation capacity of the specimens with 600 MPa re-bar were comparable to those of the specimens with 400 MPa re-bars.

The Execution and Estimation of Construction Cost of High Fluidity Concrete Applying Flowing Concrete Method (유동화공법에 의해 제조한 고유동 콘크리트의 시공 및 원가분석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • High fluidity concrete(HFC) requires high dosage of superplasticizer to acquire sufficient fluidity, and high contents of fine powder and viscosity enhancing admixtures to resist segregation. The use of high amount of admixtures to make HFC at batcher plant in ready mixed concrete company is one of the reasons to raise the manufacturing cost of HFC. For this reason, new type of manufacturing method of HFC are described using both flowing concrete method and segregation reducing superplasticizer(SRS) in order to gain economical profit and offer the convenience for quality control.. As dosage of melamine based superplasticizer increases, it shows that fluidity and bleeding increase, while air contents and ratio of segregation resistance decrease. It also shows that addition of viscosity agent into superplasticizer reduce bleeding and improve segregation resistance of concrete. Dosage of AE agent into superplasticizer containing viscosity agent recovers loss of air contents during flowing procedure. Combination of proper contents of superplasticizer, viscosity agent and AE agent make possible to develope segregation reducing type superplasticizer. Compressive strength of high fluidity concrete applying flowing method with it is higher than that of base concrete. No differences of compressive strength between compacting methods are found. For the estimation of construction cost of high fluidity concreting using segregation reducing type superplasicizer, under same strength levels, although material cost of high fluidity concrete is somewhat higher than that of plain concrete due to segregation reducing type superplasticizer cost, labor cost and equipment cost of high fluidity concrete is cheaper than that of plain concrete. However, based on the strength differences, high fluidity concrete shows lower material cost, labor cost and equipment cost than that of plain concrete due to decreasing in size of member and re-bar caused by high strength development of concrete.