• Title/Summary/Keyword: High-Speed Vehicle

Search Result 1,302, Processing Time 0.028 seconds

An Estimation-Based Scanning Method of Mobile Relay (이동릴레이의 추정기반 스캐닝 방안)

  • Lee, Hyun-Jin;Kim, Jae-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.10
    • /
    • pp.850-857
    • /
    • 2012
  • A moving network is the usage model that provides the mobile stations to the communication service via the mobile relay deployed in the high-speed vehicle. The mobile relay periodically performs the signal strength measurement of the neighbor base stations to select the target base station during the handover procedure. The mobile stations experience the service disruption during the measurement of the mobile relay. In this paper, we propose the estimation based scanning method to overcome the service disruption of the mobile stations connected via the mobile relay. In the proposed method, mobile stations subordinated in the mobile relay periodically measure the signal strength of neighbor base stations in order to perform handover. The measured signal strength is used to estimate the signal strength between the mobile relay and the neighbor base station. We performed simulations in order to evaluate the performance of the proposed method in terms of the estimation accuracy and the overhead due to the exchange of channel information. By the simulation result, The estimation error is less than 4dBm when more than 6 mobile stations are used for the estimation. The overhead caused by the proposed method is less than that caused by the direct measurement of the mobile relay when the data rate is more than 8Mbps.

Magnetic Levitation Control through the Introduction of Bogie Pitch Motion into a Control Law (대차 피치운동을 반영한 흡인식 자기부상제어)

  • Ha, Chang-Wan;Kim, Chang-Hyun;Jo, Jeong-Min;Lim, JaeWon;Han, Hyung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.2
    • /
    • pp.87-93
    • /
    • 2015
  • The uneven reaction surface profile facing the lift magnets in attractive Maglev vehicles naturally brings about pitch motion of the bogie. In particular, in the placement configuration of the long stator of the linear synchronous motor (LSM) on the track for high-speed propulsion, surface irregularities and the offsets between the stator packs create measurable airgaps, i.e., the clearance between the magnet and the stator, with discontinuously extreme values, resulting in bogie pitch motion. This occurs because the airgap velocities and accelerations derived by the differentiations of the measured air-gaps are used to determine the voltages applied to the magnets. This paper incorporates bogie pitch motion into a control law for each magnet controller to reduce the variations in both the airgap and the pitch angle. The effectiveness of the proposed method is analyzed using a full-scale Maglev vehicle running over a test track.

Leader - Follower based Formation Guidance Law and Autonomous Formation Flight Test of Multiple MAVs (편대 유도 법칙 및 초소형 비행체의 자동 편대 비행 구현)

  • You, Dong-Il;Shim, Hyun-Chul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.2
    • /
    • pp.121-127
    • /
    • 2011
  • This paper presents an autonomous formation flight algorithm for micro aerial vehicles (MAVs) and its flight test results. Since MAVs have severe limits on the payload and flight time, formation of MAVs can help alleviate the mission load of each MAV by sharing the tasks or coverage areas. The proposed formation guidance law is designed using nonlinear dynamic inversion method based on 'Leader-Follower' formation geometric relationship. The sensing of other vehicles in a formation is achieved by sharing the vehicles' states using a high-speed radio data link. the designed formation law was simulated with flight data of MAV to verify its robustness against sensor noises. A series of test flights were performed to validate the proposed formation guidance law. The test result shows that the proposed formation flight algorithm with inter-communication is feasible and yields satisfactory results.

AGV Dispatching with Stochastic Simulation (확률적 시뮬레이션 기반 AGV 배차)

  • Choe, Ri;Park, Tae-Jin;Ryu, Kwang-Ryel
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.837-844
    • /
    • 2008
  • In an automated container terminal, various factors affect the operation of container handling equipment such as quay cranes and AGVs, and thus calculating the exact operation time is nearly infeasible. This uncertainty makes it difficult to dispatch AGVs well. In this paper, we propose a simulation-based AGV dispatching algorithm When dispatching an AGV to an operation, the proposed algorithm conducts multiple stochastic simulation for the succeeding AGV operations for the predetermined period to collect stochastic samples of the result of the dispatching. In the stochastic simulation, the uncertainty of crane operations is represented as a simple probability distribution and the operation time of a crane is determined according to this. A dispatching option is evaluated by the total delay time of quay cranes which is estimated by averaging the quay crane delay of each simulation In order to collect a sufficient number of samples that guarantee the credibility of the evaluation, we devised a high-speed simulator that simulates AGV operation The effectiveness of the proposed algorithm is validated by simulation experiments.

A Study on the Arc Position which Influence on Quality of Plug Welding in the Vehicle Body (차체 플러그 용접품질에 영향을 미치는 아크 위치에 대한 실험적 기초 연구)

  • Lee, Kyung-Min;Kim, Jae-Seong;Lee, Bo-Young
    • Journal of Welding and Joining
    • /
    • v.30 no.3
    • /
    • pp.66-70
    • /
    • 2012
  • Welding is an essential process in the automotive industry. Most welding processes that are used for auto body is spot welding. And $CO_2$ arc welding is used in a small part. In production field, $CO_2$ arc welding process is decreased and spot welding process is increased due to welding quality is poor and defects are occurred in $CO_2$ arc welding process frequently. But $CO_2$ arc welding process should be used at robot interference parts and closed parts where spot welding couldn't. $CO_2$ welding is divided into lap welding and plug arc spot welding. In case of plug arc spot welding, burn through and under fill were caused in various welding environment such as different thickness combinations of base metal, teaching point, over the two steps welding and inconsistent voltage/current. It makes some problem like poor quality of welding area and decrease the productivity. In this study, we will evaluate the effect of teaching point through the weld pool behavior and bead geometry in the arc spot welding at the plut hole. Welding position is horizontal position. And galvanized steel sheet of 2.0mm thickness that has plug hole of 6mm diameter was used. Teaching point was changed by center, top, bottom, left and right of the plug hole. At each condition, the phenomenon of weld pool behavior was confirmed using a high-speed camera. As the result, we find the center of plug hole is the most optimal teaching point. In the other teaching point, under fill was occurred at the plug hole. This phenomenon is caused by gravity and surface tension. For performance of arc spot welding at the plug hole, the teaching condition should be controlled at a center of plug hole.

Vibration Isolation of Wave Barriers Constructed Near a Shallow Tunnel (저심도 터널과 인접한 방진벽의 지반진동 저감효과)

  • Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.567-577
    • /
    • 2015
  • This paper presents an assessment method of the ground vibration level with a combination of measured data and an analytic method. The basic concept of the method is similar to that in FRA(Federal Railway Administration) manual for detailed vibration analyses. However, going into detail, the assessment method was modified for a feasible evaluation of the vibration reduction effects of diverse types of wave barriers. The force density was evaluated in a vehicle-track interaction analysis and the transfer mobility of vibration was analyzed through a 2-D ground vibration analysis. The calculated 2-D transfer mobility was corrected to incorporate transfer characteristics of actual ground vibration by comparing the previously measured data and analysis results. Nine types of vibration reduction effects of wave barriers were analyzed on a shallow tunnel section of an urban railway where numerous civil complaints had actually been filed.

A Research on Characteristics of Internal Flow Based on the Gun Barrel Length and Ammunition Pressure. (포신 길이와 탄약 압력에 따른 포신 내부 유동 특성 연구)

  • Jung, Hee-Chur;Kim, Kyoung-Rok;Kang, Yo-Han;Ban, Young-Woo;Jung, Duck-Hyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.513-520
    • /
    • 2018
  • This research concerns the characteristics of tank barrel inner flow according to the barrel length and the pressure of ammunition when fired. By analyzing the flow characteristics of the bore evacuator according to barrel length and ammunition pressure regarding ammunition design, it is possible to prevent the flareback phenomenon that may occur during ammunition operation. Through bore evacuator flow analysis by barrel length and ammunition pressure, we identified key design factors concerning barrel and ammunition compatibility including speed, accuracy, penetration performance and range. Test results found if barrel length is long and ammunition pressure is low, bore evacuator operation time is slow. Therefore, there is a high probability that propellant gas will enter the battle vehicle. Therefore, the correlation analysis method of bore evacuator flow characteristics based on barrel length and ammunition pressure is considered as a primary method to improve operational performance. When designing new ammunition, the correlation analysis method will be used to determine ammunition weight and select the propellant pressure.

Velocity Aided Navigation Algorithm to Estimate Current Velocity Error (해조류 속도 오차 추정을 통한 속도보정항법 알고리즘)

  • Choi, Yun-Hyuk
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.245-250
    • /
    • 2019
  • Inertial navigation system has navigation errors because of the error of inertial measurement unit (IMU) and misalignment over time. In order to solve this problem, aided navigation system is performed using global navigation satellite system (GNSS), speedometer, etc. The inertial navigation system equipped with underwater vehicle mainly uses speedometer and performed aided navigation because satellite signals do not pass through underwater. There are DVL, EM-Log, and RPM in the speedometer, and the sensors are applied according to the system environment. This paper describes velocity aided navigation using RPM of inertial navigation system operating in high speed and deep water environment. In addition, we proposes an algorithm to compensate the limit of RPM with straight direction and the current velocity error. There are results of monte-calo simulation to prove performance of the proposed algorithm.

Simulations of Axisymmetric Transition Flow Regimes Using a CFD/DSMC Hybrid Method (CFD/DSMC 혼합해석기법을 이용한 축대칭 천이영역 유동 해석)

  • Choi, Young-Jae;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.3
    • /
    • pp.169-176
    • /
    • 2019
  • In the present study, a CFD/DSMC hybrid method performed by a coupled analysis between the CFD method and the DSMC method was developed to obtain the flow information on the rarefied gas flows effectively. Flow simulations around the high speed vehicles on the transition flow regimes were conducted by using the developed method. The FRESH-FX vehicle made of cone and cylinder shapes was considered for the simulations. The results of the hybrid method were compared with the results of the pure CFD and the pure DSMC method to confirm the reliability and efficiency of the hybrid method. It was found that the gradient and the intensity of the shock waves were weakened due to the relatively low density on the transition flow regime. It was confirmed that the results of the hybrid analysis were different to those of the pure CFD analysis and almost identical to those of the pure DSMC analysis. In addition, the computational time of the hybrid method was reduced than that of the pure DSMC method. As a result, it was obtained that the validity and the efficiency of the CFD/DSMC hybrid method.

A Estimation of Dwell Time of Low-floor Buses considering S-BRT Operation Behavior (S-BRT 운행행태를 고려한 저상버스의 정차시간 예측모형)

  • Shin, S.M.;Lee, S.B.;Kim, Y.C.;Park, S.H.;Yu, Y.S.;Choi, J.H.
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.72-79
    • /
    • 2021
  • This basic study introduces the concept of S-BRT and develops dwell time estimation models that consider road geometry and S-BRT characteristics for a signal operation strategy to meet the S-BRT's operational goal of high speed and punctuality. Field surveys of low-floor buses similar in shape to S-BRTs and data collection of passengers, station elements, vehicle elements, and other factors that can affect stop times were used in a regression analysis to establish statistically significant dwell time estimation models. These dwell time estimation models are developed by categorizing according to the locations of the signal or sidewalk that have the most impact on the dwell time. In this way, the number of people boarding and alighting the bus at the crowded door and the number of people boarding and alighting the bus at the front door considering the internal congestion was analyzed to affect the dwell time. The estimation dwell time models in this study can be used in the establishment of strategies that provide priority signals to S-BRTs.