• Title/Summary/Keyword: High-Resolution satellite

Search Result 1,139, Processing Time 0.029 seconds

Economic Analysis of Typhoon Surge Floodplain that Using GIS and MD-FDA from Masan Bay, South Korea (MD-FDA와 GIS를 이용한 마산만의 태풍해일 범람구역 경제성 분석)

  • Choi, Hyun;Ahn, Chang-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.4
    • /
    • pp.724-729
    • /
    • 2008
  • In the case of 'MAEMI', the Typhoon which formed in September, 2003, the largest-scale damage of tidal wave was caused by the co-occurrence of Typhoon surge and full tide. Until now Korea has been focusing on the calculating the amount of damage and its restoration to cope with these sea and harbor disasters. It is essential to establish some systematic counterplans to diminish such damages of large-scale tidal invasion on coastal lowlands considering the recent weather conditions of growing scale of typhoons. Therefore, the purpose of this research is to make the counterplans for prevention against disasters fulfilled effectively based on the data conducted by comparing and analyzing the accuracy between observation values and the results of estimating the greatest overflow area according to abnormal tidal levels centered on Masan area where there was the severest damage from tidal wave at that time. It's necessary utilize data like high-resolution satellite image and LiDAR(etc.) for correct analysis data considering geographical characteristics of dangerous area from the storm surge. And we must make a solution to minimize the damage by making data of dangerous section of flood into GIS Database using those data (as stated above) and drawing correcter damage function.

Implementation of GLCM/GLDV-based Texture Algorithm and Its Application to High Resolution Imagery Analysis (GLCM/GLDV 기반 Texture 알고리즘 구현과 고 해상도 영상분석 적용)

  • Lee Kiwon;Jeon So-Hee;Kwon Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.2
    • /
    • pp.121-133
    • /
    • 2005
  • Texture imaging, which means texture image creation by co-occurrence relation, has been known as one of the useful image analysis methodologies. For this purpose, most commercial remote sensing software provides texture analysis function named GLCM (Grey Level Co-occurrence Matrix). In this study, texture-imaging program based on GLCM algorithm is newly implemented. As well, texture imaging modules for GLDV (Grey Level Difference Vector) are contained in this program. As for GLCM/GLDV Texture imaging parameters, it composed of six types of second order texture functions such as Homogeneity, Dissimilarity, Energy, Entropy, Angular Second Moment, and Contrast. As for co-occurrence directionality in GLCM/GLDV, two direction modes such as Omni-mode and Circular mode newly implemented in this program are provided with basic eight-direction mode. Omni-mode is to compute all direction to avoid directionality complexity in the practical level, and circular direction is to compute texture parameters by circular direction surrounding a target pixel in a kernel. At the second phase of this study, some case studies with artificial image and actual satellite imagery are carried out to analyze texture images in different parameters and modes by correlation matrix analysis. It is concluded that selection of texture parameters and modes is the critical issues in an application based on texture image fusion.

Ocean Surface Winds Over the Seas Around Korea Measured by the NSCAT(NASA Scatterometer) (NSCAT (NASA Scatterometer)에 의한 한국근해의 해상풍)

  • 이동규
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.37-52
    • /
    • 1998
  • The NSCAT(NASA Scatterometer) carried by the japanese Advanced Earth Observing Satellite(ADEOS) was the first high resolution(25 km) device for the direct wind measurement over the ocean. Even it was ceased to operate in lune of 1977 because of the power failure, it gave the first opportunity to the marine meteorologists to study the direct measured ocean wind during its 9 months of operation, especially around Korea. This study is to show monthly mean ocean wind and wind stress curl fields around Korea from January, 1997 to June, 1997. Mean ocean winds in January are predominantly northwesterly and the strongest wind(12 m/s) is found near Vladivostok. The winds in the western East Sea are strongly inf1uenced by the mountain range in Korea and these topographically influenced winds make about five times larger wind stress curl fields than previous estimates based on the weather maps. The calculation of Sverdrup transport in the East Sea shows the possibility of the directional change of the East Korean Cold Current from southward to northward direction caused by the winter wind. The downwelling area near North Korea has maximum estimated speed of 45 m in january and this wind induced downwelling makes good condition for the formation of Intermediate East Sea Water together with vigorous mixing by the strong wind.

A Review of Change Detection Techniques using Multi-temporal Synthetic Aperture Radar Images (다중시기 위성 레이더 영상을 활용한 변화탐지 기술 리뷰)

  • Baek, Won-Kyung;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_1
    • /
    • pp.737-750
    • /
    • 2019
  • Information of target changes in inaccessible areas is very important in terms of national security. Fast and accurate change detection of targets is very important to respond quickly. Spaceborne synthetic aperture radar can acquire images with high accuracy regardless of weather conditions and solar altitude. With the recent increase in the number of SAR satellites, it is possible to acquire images with less than one day temporal resolution for the same area. This advantage greatly increases the availability of change detection for inaccessible areas. Commonly available information in satellite SAR is amplitude and phase information, and change detection techniques have been developed based on each technology. Those are amplitude Change Detection (ACD), Coherence Change Detection (CCD). Each algorithm differs in the preprocessing process for accurate automatic classification technique according to the difference of information characteristics and the final detection result of each algorithm. Therefore, by analyzing the academic research trends for ACD and CCD, each technologies can be complemented. The goal of this paper is identifying current issues of SAR change detection techniques by collecting research papers. This study would help to find the prerequisites for SAR change detection and use it to conduct periodic detection research on inaccessible areas.

The Characteristics of Submarine Groundwater Discharge in the Coastal Area of Nakdong River Basin (낙동강 유역의 연안 해저지하수 유출특성에 관한 연구)

  • Kim, Daesun;Jung, Hahn Chul
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1589-1597
    • /
    • 2021
  • Submarine groundwater discharge (SGD) in coastal areas is gaining importance as a major transport route that bring nutrients and trace metals into the ocean. This paper describes the analysis of the seasonal changes and spatiotemporal characteristicsthrough the modeling monthly SGD for 35 years from 1986 to 2020 for the Nakdong river basin. In this study, we extracted 210 watersheds and SGD estimation points using the SRTM (Shuttle Radar Topography Mission) DEM (Digital Elevation Model). The average annual SGD of the Nakdong River basin was estimated to be 466.7 m2/yr from the FLDAS (Famine Early Warning Systems Network Land Data Assimilation System) recharge data of 10 km which is the highest resolution global model applicable to Korea. There was no significant time-series variation of SGD in the Nakdong river basin, but the concentrated period of SGD was expanded from summer to autumn. In addition, it was confirmed that there is a large amount of SGD regardless of the season in coastal area nearby large rivers, and the trend has slightly increased since the 1980s. The characteristics are considered to be related to the change in the major precipitation period in the study area, and spatially it is due to the high baseflow-groundwater in the vicinity of large rivers. This study is a precedentstudy that presents a modeling technique to explore the characteristics of SGD in Korea, and is expected to be useful as foundational information for coastal management and evaluating the impact of SGD to the ocean.

A Study on Possibility of Improvement of MIR Brightness Temperature Bias Error of KOMPSAT-3A Using GEOKOMPSAT-2A (천리안2A호를 이용한 다목적실용위성3A호 중적외선 밝기 온도 편향오차 개선 가능성 연구)

  • Kim, HeeSeob
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.977-985
    • /
    • 2020
  • KOMPSAT-3A launched in 2015 provides Middle InfraRed(MIR) images with 3.3~5.2㎛. Though the satellite provide high resolution images for estimating bright temperature of ground objects, it is different from existing satellites developed for natural science purposes. An atmospheric compensation process is essential in order to estimate the surface brightness temperature from a single channel MIR image of KOMPSAT-3A. However, even after the atmospheric compensation process, there is a brightness temperature error due to various factors. In this paper, we analyzed the cause of the brightness temperature estimation error by tracking signal flow from camera physical characteristics to image processing. Also, we study on possibility of improvement of MIR brightness temperature bias error of KOMPSAT-3A using GEOKOMPSAT-2A. After bias compensation of a real nighttime image with a large bias error, it was confirmed that the surface brightness temperature of KOMPSAT-3A and GEOKOMPSAT-2A have correlation. We expect that the GEOKOMPSAT-2A images will be helpful to improve MIR brightness temperature bias error of KOMPSAT-3A.

Descent Dataset Generation and Landmark Extraction for Terrain Relative Navigation on Mars (화성 지형상대항법을 위한 하강 데이터셋 생성과 랜드마크 추출 방법)

  • Kim, Jae-In
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1015-1023
    • /
    • 2022
  • The Entry-Descent-Landing process of a lander involves many environmental and technical challenges. To solve these problems, recently, terrestrial relative navigation (TRN) technology has been essential for landers. TRN is a technology for estimating the position and attitude of a lander by comparing Inertial Measurement Unit (IMU) data and image data collected from a descending lander with pre-built reference data. In this paper, we present a method for generating descent dataset and extracting landmarks, which are key elements for developing TRN technologies to be used on Mars. The proposed method generates IMU data of a descending lander using a simulated Mars landing trajectory and generates descent images from high-resolution ortho-map and digital elevation map through a ray tracing technique. Landmark extraction is performed by an area-based extraction method due to the low-textured surfaces on Mars. In addition, search area reduction is carried out to improve matching accuracy and speed. The performance evaluation result for the descent dataset generation method showed that the proposed method can generate images that satisfy the imaging geometry. The performance evaluation result for the landmark extraction method showed that the proposed method ensures several meters of positioning accuracy while ensuring processing speed as fast as the feature-based methods.

Comparison of Semantic Segmentation Performance of U-Net according to the Ratio of Small Objects for Nuclear Activity Monitoring (핵활동 모니터링을 위한 소형객체 비율에 따른 U-Net의 의미론적 분할 성능 비교)

  • Lee, Jinmin;Kim, Taeheon;Lee, Changhui;Lee, Hyunjin;Song, Ahram;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_4
    • /
    • pp.1925-1934
    • /
    • 2022
  • Monitoring nuclear activity for inaccessible areas using remote sensing technology is essential for nuclear non-proliferation. In recent years, deep learning has been actively used to detect nuclear-activity-related small objects. However, high-resolution satellite imagery containing small objects can result in class imbalance. As a result, there is a performance degradation problem in detecting small objects. Therefore, this study aims to improve detection accuracy by analyzing the effect of the ratio of small objects related to nuclear activity in the input data for the performance of the deep learning model. To this end, six case datasets with different ratios of small object pixels were generated and a U-Net model was trained for each case. Following that, each trained model was evaluated quantitatively and qualitatively using a test dataset containing various types of small object classes. The results of this study confirm that when the ratio of object pixels in the input image is adjusted, small objects related to nuclear activity can be detected efficiently. This study suggests that the performance of deep learning can be improved by adjusting the object pixel ratio of input data in the training dataset.

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

The Analysis of Change Detection in Building Area Using CycleGAN-based Image Simulation (CycleGAN 기반 영상 모의를 적용한 건물지역 변화탐지 분석)

  • Jo, Su Min;Won, Taeyeon;Eo, Yang Dam;Lee, Seoungwoo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.4
    • /
    • pp.359-364
    • /
    • 2022
  • The change detection in remote sensing results in errors due to the camera's optical factors, seasonal factors, and land cover characteristics. The inclination of the building in the image was simulated according to the camera angle using the Cycle Generative Adversarial Network method, and the simulated image was used to contribute to the improvement of change detection accuracy. Based on CycleGAN, the inclination of the building was similarly simulated to the building in the other image based on the image of one of the two periods, and the error of the original image and the inclination of the building was compared and analyzed. The experimental data were taken at different times at different angles, and Kompsat-3A high-resolution satellite images including urban areas with dense buildings were used. As a result of the experiment, the number of incorrect detection pixels per building in the two images for the building area in the image was shown to be reduced by approximately 7 times from 12,632 in the original image and 1,730 in the CycleGAN-based simulation image. Therefore, it was confirmed that the proposed method can reduce detection errors due to the inclination of the building.